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Abstract—For recommendation systems, full learning from
features is critical to improving system accuracy. Most recom-
mendation systems collect a large number of features to improve
the recommendation accuracy, but they ignore the importance of
extracting important feature combinations. Even if some systems
manually measure important features based on experience, they
cannot automatically select important feature combinations, that
is why they can not be used to guide model training. In this
paper, a Two-stage Multi-task Recommendation Model(TMRM)
is proposed which aims to automatically select important feature
combinations from massive features, and it also contributes to
achieving better recommendations through a combination of tree-
based model and neural network. Extensive experiments on two
large public data sets are conducted on TMRM, and the results
demonstrate the superiority of our proposed method over state-
of-the-art solutions on performance of recommendation systems.

Index Terms—recommendation systems, feature selection,
multi-task learning

I. INTRODUCTION

With the development of artificial intelligence, personalized

recommendation has become an important part of intelligent

networks, and it has been widely used in various practical

systems. Most recommendation models work to improve their

accuracy by using complex structures and large amount of

features, such as Youtube’s DNN [6], Wide&Deep [5]. These

models can gain effective information from massive features

by exerting their advantages of generalization and feature

combination of neural network, so as to get good recommen-

dation results. However, it’s known that each feature has a

different impact on the recommendation results, we can not

know whether the model has actually learned the information

of important features. As a result, we will fall into a difficult

situation that although we can improve the performance of the

model by adding a large number of features, when the model

performance reaches its bottleneck, we can’t judge whether

this is the upper limit of the model, or because the model does

not correctly learn the importance of different features. We

have reason to believe that if we can tell the recommendation

model which is an important combination of features to guide

the training of the model, the recommendation result will be

better.

At present, many methods have been developed for selecting

important features to verify the reliability of recommendation

systems, such as LIME [14], in press RSLIME [21], Anchors

[15]. For the same user-item-result tuple, the important fea-

tures they provide remain the same regardless of the model

structure. However, these methods are post-tested for the

importance of features after the recommendation model is

completed. They only can test the model but can not improve

its performance.

In order to make the automatic discovery of important fea-

ture combinations from massive features, and to improve the

accuracy of recommendation models, a Two-stage Multi-task

Recommendation Model boosted feature selection (TMRM) is

innovatively proposed, which can achieve the following goals

simultaneously:

1) Select important feature combinations automatically

2) Leverage the learning ability of neural network to obtain

higher accuracy through multi-task learning

3) Give an important feature combination along with an

accurate recommendation result, informing users of the

important features that influence this recommendation.

The rest of this paper is organized as follows: Section II

elaborates related work on feature selection and recommenda-

tion; Section III demonstrates the details and implemetation of

the TMRM model proposed in this paper, and Section IV is

the experimental analysis based on the model, which includes

both accuracy analysis and feature selection analysis.

II. RELATED WORK

Recommendation models that automatically selecting fea-

tures and cross-combining features fall into three categories:

tree-based model [10], [18], [20], factorization-based model

[1], [4], neuron-network-based model [5]–[7], [9].

Tree-based model. Tree model such as gradient boosting

decision tree(GBDT) is fused with other methods that improve

generalization to draw on the merits of both models. The work

[20] and [3] use GBDT instead of manually crafting cross

features, and then feed the results into the embedding model.

However, tree model that boosted by embedding method is

difficult to make final feature selection.
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Fig. 1. Stage of feature selection.

Factorization-based model. In order to make factorization

have an interpretable meaning, Behnoush Abdollahi [1] use the

vector of item which is positively selected by users to filter

all item factorization. Xu Chen [4] and Yongfeng Zhang [19]

add phrase-level sentiment analysis to matrix factorization.

However, due to computational complexity, all the above

models are limited to low-order feature combination, which

limits the generalization ability.

Neural-Network-based model. These models, [5]–[7], [9],

use neural networks to obtain high-level features and improve

the generalization and accuracy, but they all ignore the impor-

tance of giving final important cross feature learned by models

explicitly, which makes them easily lose the trust of users.

We believe that a good recommendation model can not

only deal with tremendous features, but also automatically

extract important combinations of features behind the data.

Consequently, TMRM is designed in this paper to achieve this

goal. Detailed model description can be found in section III.

III. ARCHITECTURE

We will describe the structure of our TMRM in detail in

this section, and verify its performance in section IV.

For a clearer description, the following definitions are used

in this paper: N for the number of features, M for the number

of samples, X ∈ RM for the sample set, x ∈ X for a single

sample, F ∈ RN represents a feature set, and f ∈ F represents

a single feature.

A. Stage of feature selection

It is known that the importance of each feature is not equal,

and those important features are the points that influence

user’s decisions. In order to explore the important features

automatically, we adopt tree model, which selects feature

and its split value with highest information gain as the split

condition of tree nodes, and then the data are divided into

two parts. Compared to one tree alone, multiple trees are

more expressive and can better identify effective features and

feature combinations. As a classic multi-tree model, Gradient

Boosting Decision Tree(GBDT) prefers features with high

discrimination on the overall data. Hence, GBDT is used to

analyze the samples and get the split result of all samples, that

is, the output of all leaf nodes in GBDT.

As shown in Fig. 1, we take two trees as an example. For

sample x, x passes through the first tree of GBDT to the

second. After that, it is assigned to the fourth leaf node. Then

the split path of x is (f1 > a, f2 > b, f3 > c, f4 > d).
Assume the training target of GBDT is user preference,

which is represented by CTR. And let the output of leaf

node is 0 or 1, then x gets a sparse 0-1 vector 01000001

after GBDT, which can restore the split path of the sample.

Then it can be used as ground truth of important features

in stage 2. So we train GBDT to get vectors of all samples

as feature combination set E = {E1, E2, ...Em}, and each

Ei = {e1, e2, ...ep}, i ∈ (0,m), each e takes a value of 0 or

1, representing the output of a leaf node of GBDT, and the

value of p depends on the depth and number of trees.

While training GBDT to get the predicted results, we keep

the activated leaf nodes of all trees as cross-features, denoted

as y2, where y2 ∈ E.

B. Multi-task learning stage

As shown in Fig.2, the second stage of TMRM is a multi-

task learning module which works to improve the recommen-

dation accuracy by learning the obtained data rules in stage

1 and user preferences. This stage is designed to achieve this

goal as learning the cross features is beneficial to learning

users’ preference.

The input of this module adds ID features which include

User-ID and Item-ID (represented by fu and fv) to all features

used in the first stage. And this module is divided into pre-

processing layer, hidden layer, and output layer. One of this

module’s tasks is to predict whether the item will be clicked.

It is a binary classification task, assume ŷ1 ∈ {0, 1} is

the prediction of CTR, then binary-classifier h is X → ŷ1.

Another task is to learn the important cross-features selected

by stage 1, which is equivalent to a multi-label classification

task. As defined in Section III-A, the important cross-feature

set is E = {E1, E2, ..Em}, where Ei = {e1, e2, ...ep} is

output of the leaf node in stage 1, then the multi-classifier

I is X → ŷ2 , assigning Ei to each instance xi ∈ X , so the

output of classifier I is a vector ŷ2 = (I1(x), I2(x), ..., Ip(x)).
Apart from the output layer, these two tasks share structure and

parameters of each other.

Pre-processing layer densifies features of sample x. Drawing

on the idea of FFM [12], the input was divided into multiple

fields. As shown in Fig. 2, only f2 is 1-value in field 1,

then each neuron in the corresponding pre-processing layer is

activated by only one non-zero value, so we get a vector v2∗f2
to represent filed 1 where v2 is (v21, v22, ..v2k). Hidden layer

is divided into linear part, low-order-feature part and high-

order-feature part. The input of linear part is all the features

of the original input layer. And input of the rest two parts

are the same which are the output (v1f1, v2f2, ..vnfn) of the

pre-processing layer. These two parts do linear weighting and

second-order combination of features, which can be expressed

as:

ylinear = w0 +

n∑

i=1

wifi (1)

ylow order =
∑

i

∑

j

vivjfifj (2)

The high-order feature part is a 3-layer fully connected

network, and the features are deeply cross-combined. We let
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Fig. 2. Architecture of TMRM, stage 1 on the right, used to filter important feature combinations, stage 2 on the left, using the important features selected
in stage 1 for multi-task learning.

L denote numbers of hidden layer of this part, l ∈ L,and H l

denotes the l-th output, then the forward process is:

Hl+1 = ReLU(W lHl +Bl) (3)

ydeep = WHL+1 +BL+1
(4)

where the output is ydeep . Output layer is divided into two

parts to get the results of recommendation(ŷ1) and important

cross-features(ŷ2).

ŷ1 = σ(ylinear + ylow order + ydeep) (5)

ŷ2 = σ(ReT (ylinear, ylow order, ydeep) + b) (6)

where ylow order ∈ Rk , and ydeep is obtained by formula.4.

If y deep ∈ Rs, then Re ∈ R(1+k+s)∗p, ŷ2 ∈ Rp, where k is

the dimension of the vector v mentioned above, and s is the

number of nodes in the last layer of the deep part.

C. learning

For the learning of recommendation results, we regard it as

a binary classification task, and the loss function is

L1 =
∑

i

−y1logŷ1 − (1− y1)log(1− ŷ1) (7)

where y1 stands for ground truth.

For the learning of cross features, we consider it as multi-

label classification tasks, and we dealt learning of multiple

feature combinations as independent to simplify the calcula-

tion. Then the loss function is

L2 =
∑

i

logP (y2|I)

=
∑

i

log(Πj=p
j=1P (y2j |Ij))

=
∑

i

∑

j

[−y2j logŷ2j − (1− y2j )log(1− ŷ2j )]

(8)

where i represents the i-th sample, and j represents the j-th

feature. For the first stage, the optimization goal is L1, and

loss of the second stage is combination of L1 and L2, which is

denoted by L. Two methods are used in this paper. The first is

to learn the optimal weights to linearly weight multiple tasks

to get LOW inspired by [16], which is also the general practice

of multi-task learning. The other is to introduce homogeneity

uncertainty inspired by [13] to get LHU , which suggests multi-

task learning is likely to predominate certain tasks, making

other tasks less adequately optimized. Therefore, the weight

problem of different tasks is solved from the perspective of

task dependency uncertainty based on their schemes. Thus we

get
LOW = w1L1 + w2L2 + λ2

(9)

LHU = [
1

2λ2
1

L1 + log(λ2
1)] + [

1

2λ2
2

L2 + log(λ2
2)] (10)

where w1,w2 represent the weights of recommendation task

and feature selection task respectively, which are automatically

trained.λ1,λ2 are two scalar of observation noises to adjust

multi-task weights dynamically.

We use the two loss functions mentioned above to train

our TMRM models, which are described as TMRM-OW and

TMRM-HU. We verify their performance in section IV.

IV. EXPERIMENTS

The main contribution in this paper is to improve the

recommendation performance while giving important feature

combinations. We will answer the following three questions

through a series of experiments: 1) RQ1: Can TMRM achieve

higher accuracy when compared with state-of-the-art models?

2) RQ2: Can TMRM be effective in feature selection? 3) RQ3:

How do different hyper-parameters affect TMRM?

A. Dataset

We selected two public data sets to validate TMRM: e-

commerce data(1 [11], called Retail) and movie data (a com-

1https://www.kaggle.com/retailrocket/ecommerce-dataset
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Fig. 3. Performance comparison of AUC and Logloss in different models.

bination of Movielens-10M2 and IMDB3 [2], called Movie-I).

The detailed information about these two data sets is in Table.I.

TABLE I
STATISTICS OF THE DATASETS

Dataset #User #Item #Features Interaction
Retail 11719 12511 1769 22457

Movie-I 2113 10197 112695 855598

B. Evaluation Metric

For recommendation, we randomly select 5 negative sam-

ples for one positive user-item sample. For feature selection,

we adopt the idea of NCE [8] to update parameters. In order

to evaluate the prediction results of the model, we choose

AUC and logloss as evaluation indicators of recommendation

accuracy. In addition, evaluation of the cross features selection

will be analyzed as case study in this paper.

C. Model Comparison

We compare our proposed TMRM with the following state-

of-the-art models to verify its performance. GBDT-CENT [20],

FFM [12], Wide&deep [5] and TEM [18], which are classic

models of automatic feature selection.

D. Performance of Recommendation (RQ1)

Fig.3 exhibits the performance of different models on two

data sets. The performance of our TMRM-OU model exceeds

that of FFM and GBDT-CENT, but it can’t be better than

wide&deep and TEM. Because the simple linear weighting of

multi-task model makes the model tend to favor one task and

neglect the learning of another task. This makes multi-task

learning dominated by single task, and it can not achieve the

effect of joint training. But our TMRM-HU model can over-

perform all above models in recommendation performance,

reflecting that the introduction of homogeneity uncertainty

improves the learning of multi-task.

2http://www.grouplens.org
3http://www.imdb.com

E. Case Study (RQ2)

In order to illustrate the accuracy and validity of the feature

combinations selected by TMRM, we conducted the following

case studies only on Movie-I because the fields of Retails are

all hashed, it is not convenient to intuitively obtain the true

meaning.

For each participant, we provide the movies that a user

in dataset has seen and the tags he/she has given for the

participant. They need to infer the user’s preferences and the

features of the user’s attention to movies. Then, we will pro-

vide these participants with the recommendation results from

our TMRM and the important features for each recommended

movie. They will give an evaluation through our well-designed

questionnaire.

In order to make the questionnaire more objective and

reliable, three questions are designed as follows:

Q1: Are you satisfied with this recommendation? Q2: Is the

features of the movie given in this recommendation correct?

Q3: Are you interested in the movie’s features given in this rec-

ommendation? According to [17], we design a 5-score answer,

where 1 represents strongly negative and 5 indicates strongly

positive. One point to note is that we select Wide&Deep as

the representative from other models that cannot give feature

selection but have high accuracy, give feature selection by

randomly selecting the movie tag(denoted as Random) and

by selecting the popular tag of the movie(denote as Hot).

TABLE II
RESULT ANALYSIS OF CASE STUDY

Strategy

MeanValue Question
Q1 Q2 Q3

Random 3.641 2.257 2.143
Hot 3.641 3.142 3.011

TEM 3.940 3.704 3.546
TMRM-HU 3.978 3.712 3.500

After filtering some invalid questionnaires, we received a

total of 100 answers. As TableII shows, we use average to

represent the final result of a model and its feature selection

strategy. It shows that TMRM can indeed learn important and

effective features.

F. Hyper-parameter Studies (RQ3)

We selected several typical hyper-parameters to study their

impact on model performance. Fig.4 shows the effect of

number and depth of trees on AUC, which mainly affect the

results of our model’s first stage, section III-A. Fig.5 shows

the effect of dropout and embedding size on our model’s

Logloss, which are mainly for multi-task learning stage.

V. CONSLUSION

In this paper, a Two-stage Multi-task Recommendation

Model, TMRM, is proposed. With a two-stage process for

samples and a multi-task learning approach, TMRM can

achieve excellent results in terms of accuracy. In contrast with
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Fig. 4. Performance comparison of AUC w.r.t.the tree number and the depth
of tree

Fig. 5. Performance comparison of Logloss w.r.t. dropout values and the
embedding size.

other recommendation models, TMRM considers the influence

of important feature combinations, and uses the tree model

to extract important cross-features in advance to guide the

training of neural networks. Based on TMRM, we provide

personalized recommendations and give item’s features in

line with user’s interests. Comprehensive experiments results

validate the performance and advantage of TMRM.
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