
32

A Revisiting Study of Appropriate Offline Evaluation for

Top-N Recommendation Algorithms

WAYNE XIN ZHAO and ZIHAN LIN, Renmin University of China, China

ZHICHAO FENG and PENGFEI WANG, Beijing University of Posts and Telecommunications, China

JI-RONG WEN, Renmin University of China, China

In recommender systems, top-N recommendation is an important task with implicit feedback data. Although

the recent success of deep learning largely pushes forward the research on top-N recommendation, there are

increasing concerns on appropriate evaluation of recommendation algorithms. It therefore is important to

study how recommendation algorithms can be reliably evaluated and thoroughly verified. This work presents

a large-scale, systematic study on six important factors from three aspects for evaluating recommender sys-

tems. We carefully select 12 top-N recommendation algorithms and eight recommendation datasets. Our

experiments are carefully designed and extensively conducted with these algorithms and datasets. In partic-

ular, all the experiments in our work are implemented based on an open sourced recommendation library,

Recbole [139], which ensures the reproducibility and reliability of our results. Based on the large-scale ex-

periments and detailed analysis, we derive several key findings on the experimental settings for evaluating

recommender systems. Our findings show that some settings can lead to substantial or significant differences

in performance ranking of the compared algorithms. In response to recent evaluation concerns, we also pro-

vide several suggested settings that are specially important for performance comparison.

CCS Concepts: • Information systems→ Recommender systems;

Additional Key Words and Phrases: Top-N recommendation, evaluation, experimental setup

ACM Reference format:

Wayne Xin Zhao, Zihan Lin, Zhichao Feng, Pengfei Wang, and Ji-Rong Wen. 2022. A Revisiting Study of

Appropriate Offline Evaluation for Top-N Recommendation Algorithms.ACM Trans. Inf. Syst. 41, 2, Article 32

(December 2022), 41 pages.

https://doi.org/10.1145/3545796

This work was partially supported by National Natural Science Foundation of China under Grant No. 61872369 and

61802029, Beijing Natural Science Foundation under Grant No. 4222027, and Beijing Outstanding Young Scientist Program

under Grant No. BJJWZYJH012019100020098. This work was also partially supported by Beijing Academy of Artificial

Intelligence (BAAI).

Authors’ addresses: W. X. Zhao, Gaoling School of Artificial Intelligence, Beijing Key Laboratory of Big Data Management

and Analysis Methods, Renmin University of China, Beijing, 100872, China; email: batmanfly@gmail.com; Z. Lin, School

of Information, Beijing Key Laboratory of Big Data Management and Analysis Methods, Renmin University of China,

Beijing, 100872, China; email: zhlin@ruc.edu.cn; Z. Feng and P. Wang, School of Computer Science, Beijing University of

Posts and Telecommunications, Beijing, 100876, China; emails: fzcbupt@gmail.com, wangpengfei@bupt.edu.cn; J.-R. Wen

(corresponding author), Gaoling School of Artificial Intelligence, School of Information, Beijing Key Laboratory of Big Data

Management and Analysis Methods, Renmin University of China, Beijing, 100872, China; email: jrwen@ruc.edu.cn.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1046-8188/2022/12-ART32 $15.00

https://doi.org/10.1145/3545796

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

https://orcid.org/0000-0002-8333-6196
https://orcid.org/0000-0002-6877-4470
https://orcid.org/0000-0001-6913-9260
https://orcid.org/0000-0001-8658-7102
https://orcid.org/0000-0002-9777-9676
https://doi.org/10.1145/3545796
mailto:permissions@acm.org
https://doi.org/10.1145/3545796
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3545796&domain=pdf&date_stamp=2022-12-21

32:2 W. X. Zhao et al.

1 INTRODUCTION

Since the early 2000s, recommender systems have been an important research field, which aim
to recommend suitable information resources to target users given the context [100, 131]. The
core task of recommender systems is to learn a parametric [44, 47, 118] or non-parametric [53, 93]
recommendation function that is able to better predict user preference over the resource pool
of items. According to the type of user feedback data, the recommendation is based on either
implicit feedback [90, 129] or explicit feedback [103]. Specifically, from implicit feedback, top-N
item recommendation [90] has been a widely studied task that aims to identify a small set of the
most possible items that a user may prefer from a large collection.
In the literature, various top-N recommendation algorithms have been developed [1, 15, 47,

90, 113, 118]. At the early stage, collaborative filtering approaches have been proposed to make
recommendations according to similar interests or tastes. For example, UserKNN and ItemKNN
recommend items that are from similar user preference or with similar item characteristics [1].
Such an approach lays the foundation of early solutions for recommender systems. Afterwards,
matrix factorization has been widely adopted to better characterize the user-item interaction [47,
53, 63]. The basic idea is to project users, items, and related context features into low-dimensional
semantic space, so that the factors involved in a specific interaction are drawn to be close [93].
Recently, with the success of deep learning, a number of neural recommendation algorithms [131]
have been proposed, making important progress in recommender systems.
To verify the effectiveness of a recommendation algorithm, one needs to construct reliable eval-

uation experiments with thorough comparisons. Typically, such an evaluation procedure consists
of a series of setup steps on datasets, metrics, baselines, and other protocols. As each setup step
can be conducted with different options, it is essential to develop and design appropriate criteri-
ons for standardizing the experimental settings [138]. There is substantial divergence on the used
settings or options in existing studies. With these inconsistent settings, researchers have found
that the claimed improvement through offline evaluation sometimes might not be convincing or
reliable [92]. Some studies even questioned the actual progress of recommender systems reported
in an unreproducible evaluation setting [24, 57].

In the meantime, there has been increasing research on standardized or reproducible evaluation
criterion for top-N item recommendation [58, 107]. These studies either focus on some specific
factor [58] or the entire evaluation process [107]. However, they mainly adopt traditional recom-
mendation algorithms as the objects to study. It is not clearwhether some specific findings still hold
when neural algorithms are involved in evaluation. As another limit, prior studies may not well re-
spond to recent concerns [64] about evaluation protocols on neural recommendation algorithms,
and the studied or compared settings in References [87, 99] do not align with the major diver-
gence from current debate. Besides, existing studies usually use very few comparison algorithms
or datasets. Therefore, there is a need to thoroughly revisit experimental settings of substantial
divergence in recent literature, considering both traditional and neural algorithms.
In this work, we aim to present a comprehensive, systematic study on various experimental

settings for evaluating top-N item recommendation algorithms. Our focus is to empirically exam-
ine whether various settings will lead to substantially different comparison results. Furthermore,
we aim to draw some conclusions or findings on these evaluation steps, so that the evaluation
process can be conducted in a more reproducible and reliable way. Specifically, we focus on study-
ing three very important aspects, including evaluation metrics, dataset construction, and model
optimization. For evaluation metrics, we study the correlation of comparison results on different
evaluation metrics to examine whether some metrics are redundant or requisite. In particular, we
study a recent concern about sampled metrics [9, 64], where the performance results are computed

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

A Revisiting Study of Appropriate Offline Evaluation 32:3

according to a partial candidate item list. For dataset construction, we study various filtering, or-
dering, and splitting strategies for constructing the evaluation sets, and the purpose is to compare
different combinations of these strategies and identify more reliable settings. For model optimiza-
tion, we discuss two important issues related to the performance, including optimization function
and hyper-parameter search. The goal is to derive empirical suggestions to help reproduce the
optimal performance of recommendation algorithms.
To study the above three aspects, we select 12 recommendation algorithms covering both tra-

ditional and neural-based algorithms. These recommendation algorithms correspond to distinct
architectures or designs, which are widely adopted as baselines in the literature of recommender
systems. We further select eight benchmark datasets for constructing the experiments. The eight
datasets correspond to different amounts of interaction data from diverse domains. To develop our
study, at each time, our idea is to design a complete configuration consisting of some options for
evaluation metrics, dataset construction, and model optimization. Then we vary and compare dif-
ferent options in two or more configurations and measure their differences in actual performance
rankings. Through our experiments, we try to find out the options that lead to significant change in
performance rankings and discuss what are possibly the suitable options given the rest fixed. To
make these experiments themselves reproducible and standardized, all the studied or compared
options are implemented based on an open sourced recommendation library RecBole [139]. Re-
searchers can conduct fair evaluation for recommendation algorithms or make further studies on
the evaluation protocol with the help of this library. We share all the scripts or codes to run RecBole
for our experiments.
In summary, the main contributions of this work can be listed as follows:

• We present a large-scale, systematic study on six important factors from three aspects for
evaluating recommender systems. To conduct our study, we extensively collect the research
papers on top-N recommendation and then analyze and summarize the most divergent set-
tings in different factors. This work presents a comprehensive study for appropriately eval-
uating top-N recommendation algorithms.
• We carefully select 12 top-N recommendation algorithms and eight recommendation
datasets. Our experiments are carefully designed and extensively conducted with these al-
gorithms and datasets. In particular, we utilize an open sourced recommendation library
Recbole [139] to conduct all the experiments, ensuring that our experiments can be repro-
duced from scratch. We create a GitHub page to report all the running details about our
experiments at this link: https://github.com/RUCAIBox/RecSysEvaluation.
• Based on the large-scale experiments and detailed analyses, we derive several key findings
on the experimental settings for evaluating recommender systems (see Table 1 for a brief
summary of these findings). Our findings show that some settings can lead to substantial or
significant difference in performance rankings of compared algorithms. In response to recent
evaluation concerns, we also provide some suggested settings that are specially important
for performance comparison.

The rest of this article is organized as follows. The related work is reviewed in Section 2. In
Section 3, we first present the overall procedure and then introduce the experimental settings
for this study. As the major contents, we discuss three studied aspects in Sections 4, 5, and 6,
respectively. Section 7 concludes this work and presents the future work.

2 RELATEDWORK

In this section, we first review the related work in three aspects and finally discuss the differences
between our work and existing studies.

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

https://github.com/RUCAIBox/RecSysEvaluation

32:4 W. X. Zhao et al.

Table 1. A Brief Summary of the Key Findings in This Work

Aspect New Findings Re-verified Findings

Metrics

• For performance comparison, AUC and

other beyond-accuracymetrics are very dif-

ferent from the top-N ranking metrics.

• Top-N ranking metrics capture different

characteristics of algorithm performance,

forming three coherent groups.

• Some recently proposed debiasing meth-

ods may not effectively reduce the bias

from sampled metrics.

• Sampled metrics would yield different

performance rankings in evaluation com-

pared to full-ranking metrics.

Dataset

• Dataset filtering is an important factor

that is likely to significantly affect the per-

formance rankings.

• Existing dataset construction methods

might lead to data leakage in global

timelines, which often introduces a gap

between offline evaluation and real-world

recommendation scenario.

• Performance ranking is more sensitive to

the way of data ordering than the splitting

strategy.

Optimization

• The performance of algorithms originally

with the BPR loss would decrease when it

uses BCE loss, and vice versa.

• For optimization functions, the non-

sampling method has intrinsic advantage

when the item set is large.

• The search range of hyper-parameters is

likely to affect the final results, which is of-

ten neglected by previous work. Moreover,

an efficient search strategy, i.e., sequential

search, can achieve comparable accuracy.

• For sampling-based algorithms, different

loss functions (BPR or BCE) will lead to dif-

ferent performance and the loss function of

algorithm should be carefully selected.

Re-verified findings refer that they were also discussed in previous work, but we performed new experiments to

verify them.

2.1 Top-N Recommendation Algorithms

As one of the most fundamental tasks in recommender systems, top-N recommendation has at-
tracted a large amount of research attention [107]. There are different ways to categorize existing
recommendation algorithms. Here we consider a literature classification way tailored to our ex-
periments, namely traditional algorithms, neural-based algorithms, and non-sampling algorithms.

2.1.1 Traditional Recommendation Algorithms. Early recommendation algorithms are mainly
built on the idea of collaborative filtering [13], such as UserKNN and ItemKNN [1], which recom-
mend items from someone with similar tastes or items similar to the liked ones. It was originally
proposed for modeling explicit preference with rating data, and Deshpande and Karypis [28] pre-
sented a discussion on how to extend item-oriented approach with implicit feedback data. Among
existing traditional approaches, Matrix Factorization (MF) is the most popular one for recom-
mender systems, which is also the basis of many effective algorithms [15, 47]. Early MF-based
algorithms [63] focused on explicit feedback (e.g., ratings), and such a task setting is often called
rating prediction. They learn to map users and items to a latent factor space, so that user-item re-
lationships can be re-constructed via the inner product between latent factors. A number of vari-
ants based on MF have been proposed by incorporating additional context information, including
neighborhood [62], temporal information [126], social links [36], and text information [66]. To
incorporate general side information, Factorization Machines [89] can model high-order feature
interaction based on the matrix factorization approach, where users and items were also consid-
ered as two kinds of specific features. Since explicit feedback is not always available, a large body
of studies have focused on implicit feedback recommendation, which is a ranking task in essence.
As a representative work, Rendle et al. [90] proposed a classic pairwise learning algorithm, BPR,
to optimize relative preference of a user over pairs of items based on negative sampling. Several

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

A Revisiting Study of Appropriate Offline Evaluation 32:5

efforts [48, 71] further focused on the weighting scheme to better select negative samples from
the unobserved items. These traditional recommendation algorithms are efficient to optimize and
usually robust in various settings. However, they use relatively simple fitting functions that have
limited capacity for modeling complicated user preference.

2.1.2 Neural Algorithms. With the success of deep learning, a significant number of neural al-
gorithms were proposed over the past few years [131]. As a representative algorithm, neural col-
laborative filtering (NCF) [47] proposed amulti-layer perceptron (MLP) to fit the interaction
function between users and items, which is also integrated with an additional matrix factoriza-
tion module for achieving a better performance. Furthermore, Xue et al. [122] extended the clas-
sic item-based CF method by modeling the complex relation among items with neural networks.
Hidasi et al. [51] introduced the GRU network to capture the sequential pattern from the session-
based interaction data. Besides, various neural network architectures were adapted to develop
more effective recommendation algorithms, such as attention mechanisms [5, 52, 112], memory
networks [14, 32, 108], and convolutional neural network [119, 121]. More recently, graph neural
networks were also utilized to capture complex user-item interactions [44, 113]. These algorithms
typically cast user-item interactions as interaction graphs, and aim to learn effective node represen-
tations from the topology structure of the interaction graph. Several advanced architectures were
proposed to better characterize the underlying graph structure of the interaction data. For exam-
ple, Chen et al. [18] introduced attention mechanism into GCN-based model in a self-supervised
paradigm. Yang et al. [125] proposed to utilize mutual information maximization to enhance the
learning of graph-based collaborative filtering. Although neural algorithms are more capable of
modeling complex data patterns, they are more sensitive to the training algorithm and the quality
of training data.

2.1.3 Non-sampling Model Optimization. The aforementioned implicit feedback recommenda-
tion algorithms are mostly based on negative sampling, where we sample random negative items
for optimization. Apart from this kind of algorithms, non-sampling algorithms have been proposed
by taking a different solution. The core idea is to treat all non-interacted items as negative items,
so that all the unobserved interactions with them can be used by the recommendation algorithm.
Several algorithms were proposed based on this whole-data-based strategy [29, 71]. For example,
WMF [53] considered all the unobserved interactions as negative and built a pointwise regression
approach with all the data. With the development of deep learning, auto-encoder has been a popu-
lar architecture for developing non-sampling recommendation algorithms. For example, Wu et al.
[118] proposed collaborative denoising auto-encoders (CDAE) by integrating user-specific
bias, Zhang et al. [133] designed AutoSVD++ that utilized a contrastive autoencoder to model side
information by extending the original SVD++, and Liang et al. [72] proposedVariational Autoen-
coders for Collaborative Filtering (MultiVAE) that employed a principled Bayesian approach.
To improve model robustness, Chen and de Rijke [20] further utilized a variational autoencoder to
incorporate side information for collective modeling. Besides, another category of non-sampling
algorithms focused on adapting the objective function for matrix factorization algorithms. As a
representative algorithm, Chen et al. [15] proposed an efficient neural matrix factorization

(ENMF) framework that can be optimized by an alternating-based efficient learning algorithm,
and similar methods are also used for multi-behavior recommendation [16].

2.2 Evaluation of Recommender System

2.2.1 Overall Studies. The concerns about the evaluation have been discussed alongwith the de-
velopment of recommender system. Before the prevalence of neural recommendation algorithms,
Shani and Gunawardana [99] studied how to design suitable evaluation experiments for comparing

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

32:6 W. X. Zhao et al.

and selecting a number of candidate recommendation algorithms. Besides the basic accuracy met-
rics, they also emphasized several important measurements that should be considered, including
scalability, adaptivity, and privacy. Recently, the evaluation on neural recommendation algorithms
has attracted the attention from the research community. Said and Bellogín [98] presented a tuto-
rial on discussing reproducibility and replicability of the evaluation and results. Zhao et al. [138]
studied the evaluation of top-N recommendation algorithms in three different aspects, namely
dataset splitting, sampled metrics, and domain selection. Furthermore, Sun et al. [107] systemat-
ically reviewed recent papers and studied the essential factors related to evaluation such as met-
rics, sampling, and hyper-parameters and also released an open source library for facilitating the
reliable evaluation of recommender systems. Cañamares et al. [11] extensively discussed method-
ological decisions for designing recommender systems and the corresponding choices for different
steps.

2.2.2 Evaluation Metrics. For top-N recommendation, classic evaluation metrics mainly follow
the ranking measures, such as Recall, Precision, and F1-measure (F1) [101], and there are increas-
ing studies on the effectiveness of these metrics [78, 107, 109]. Also, the correlation of these met-
rics are investigated. For example, Sun et al. [107] examined pairwise metric correlation based on
a number of recommendation algorithms and found that Recall has a weak correlation with other
metrics. Besides Recall, the relation between true- and false-positive metrics was also discussed
in Reference [78], where they found that systematic disagreements existed between the two types
of metrics. Valcarce et al. [109] further examined the robustness and discriminative power of eval-
uation metrics, showing that Precision and NGCG offer high robustness and best discriminative
power, respectively, in their study. Apart from accuracy-based metrics, beyond-accuracy metrics,
such as novelty, diversity, and surprise [101], have been recently studied. When both accuracy
and beyond-accuracy metrics are involved, recommendation algorithms are encouraged to seek
a good tradeoff between the two kinds of metrics [85]. Interestingly, a conflict between the two
kinds of metrics was also found in Reference [104]. A more recent concern about metrics is that a
large number of research works compute the metrics based on an incomplete candidate list under
sampling [47, 70, 81, 120]. It has shown that most of the sampled metrics produce inconsistent
rankings compared with original metrics [64], suggesting that sampled metrics should not be used
for evaluation. To alleviate this sampling bias, several unbiased estimators of the sampled met-
ric were introduced in References [9, 64] through theoretical analysis. Furthermore, Li et al. [69]
developed a novel mapping function for Hit-Ratio [69], which provides a safe approach to using
sampled Hit-Ratio metrics. Further analysis [9] also considered the effect of different sampling
sizes on the informativeness and consistency of experiments and found that a better size may lie
in between the maximum and minimum target sets.

2.2.3 Dataset Construction. Similarly to other machine learning tasks, a typical approach for
dataset construction is to split the original data into train, validation, and test sets [79]. The im-
pact of pre-processing strategies was studied in a recent paper [107], where they found that the
performance of algorithms generally improves when there is more training data for one user.
Besides, various data splitting strategies were discussed and used [80, 131]. Meng et al. [80] ob-
served that different splitting strategies may be biased toward specific recommendation models,
due to the different data distributions in the evaluation sets. A comparison between random and
time-aware splitting strategies was conducted in Reference [138], where different combinations
between data ordering and splitting strategies are compared and studied. To better predict online
performance, the effect of the temporal information was discussed for improving offline evalua-
tion strategies [54]. Besides, an alternative offline evaluation procedure was proposed in Reference
[55], with special considerations on the chronological order of interaction data. Considering the

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

A Revisiting Study of Appropriate Offline Evaluation 32:7

temporal effect, three splitting strategies were analyzed [10], and they suggested that temporal
global timeline splitting should be used but they were seldom used before [79].

2.2.4 Model Optimization. The model optimization approach becomes increasingly important
for neural recommendation algorithms. As a common strategy, an algorithm is trained with true
positive interactions and sampled false interactions from non-interacted items, such as the classic
BPR loss [90, 113] and the BCE loss [47]. Two simple popularity-based item samplers (i.e., low
popularity sampler and high-popularity sampler) were considered. They were compared with uni-
form sampler, showing that uniform sampling performs best in most of the cases [107]. Moreover,
combining uniform and popularity-based sampling in a proper way can potentially improve the
recommendation accuracy [50]. Furthermore, a simplified and robust negative sampling approach
with score-based memory and variance-based sampling criterion was proposed for high-quality
true negative instances [30]. Meanwhile, an adaptive sampler based on Bayesian pointwise opti-
mization was designed for implicit feedback data with noisy labels [129]. As another alternative
optimization approach, several non-sampling optimization methods are proposed in the litera-
ture [15], where they treat all the non-interacted items as negative instances and optimize the
algorithm by an objective function with all the items.

2.2.5 Online Evaluation. To evaluate the performance of recommender systems, online evalua-
tion is the most desired, since it can provide accurate results of how good our system is with real
users [94]. However, it is typically difficult to conduct online evaluation, which requires signifi-
cant efforts on integration and deployment in real applications. In industry, a commonly adopted
strategy is the online A/B test [61]. By fixing the experimental setting, we compare a studied al-
gorithm and a reference algorithm using two different (sampled) populations of users. Then, the
comparison is usually measured with some industry metrics such as Click-Through-Rate [59] and
Conversion Rate [86]. Since it is very costly to conduct online evaluation, several researchers fur-
ther investigated the correlation between online and offline performance [55, 96]. Rossetti et al.
[96] empirically showed that theremight be inconsistent ranking results between offline and online
evaluation, even for the same set of users. Since offline evaluation is likely to induce the evaluation
bias [17], there are also studies focusing on mitigating the bias from offline evaluation [17, 39, 124].
For example, for the selection bias introduced by implicit-feedback, Yang et al. [124] proposed an
unbiased offline evaluator for implicit feedback datasets, based on inverse propensity scoring. In
addition, the bias in traditional offline estimator was alleviated by Gilotte et al. [39] with a new
counterfactual estimator.

2.3 Reproducibility of Recommendation Algorithms

With the rapid progress made on recommendation algorithms, there is an increasing concern on
the reproducibility of the reported results in evaluation. A recent study [24] analyzed a number
of recent neural algorithms with a systemic comparison under the reproduced results, showing
that only a part of recently proposed algorithms can be reproduced with reasonable effort. Similar
concerns were also proposed by another work [25], raising a series of potential issues with recent
progress, including limited reproducibility, unreliable comparison, and experimental arbitrariness.
A major difficulty in reproducing these baselines is that implementation details have been miss-

ing in the original papers. In Reference [23], through extensive experiments, it is shown that more
complicated neural algorithms may not always outperform relatively simple algorithms. Another
concern is that the compared baselines lack proper optimization, and many algorithms only give
sub-optimal performance. In particular, the efficacy of MLP-based algorithms has been doubted
recently, where it was shown that simple matrix factorization algorithms may not be well tuned
with a proper hyper-parameter selection [91, 92].

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

32:8 W. X. Zhao et al.

To reproduce various recommendation algorithms, a number of open source recommender sys-
tem libraries have been publicly released. At the early stage, Mymedialite [38], LightFM [65],
RankSys [110], and LibRec [40] were released for rapid prototyping and testing of recommendation
algorithms. In particular, LibRec [40] provides an Java library with a number of non-neural recom-
mendation algorithms and built-in evaluation metrics. Then, with the resurge of deep learning

(DL), several DL-based libraries have been developed by incorporating neural network algorithms
for recommendation. For example, NeuRec [116] implemented many neural algorithms and in-
corporated sequential and social recommendation tasks into an unified framework. DeepRec [41]
was released with at-scale recommendation inference. Furthermore, DaisyRec [107], RecBole [139],
QRec [127], and ELLIOT [3] largely improved the quality of recommender system libraries with
more supporting implementations for the entire evaluation pipeline, such as data filtering/splitting
operations and hyper-parameter tuning features.

2.4 Differences with Existing Works

There are a large number of studies on evaluating recommender algorithms [58, 99, 107, 138] from
an overall [99, 107, 138] or factor-specific [54, 58] perspective. However, a majority of these prior
studies mainly focus on non-neural algorithms, and it is not clear whether the derived findings
still apply to neural algorithms. We are also aware that several recent studies have examined both
traditional and neural recommendation algorithms [107, 138]. However, these works are usually
limited to a small number of comparison algorithms or datasets.
Our work is highly built on these works, aiming to incorporate the widely discussed or studied

factors from the literature (instead of exploring new experimental settings). As a comparison, we
provide a comprehensive discussion about multiple factors, especially those with increasing con-
cerns, based on large-scale experiments with a number of comparison algorithms and datasets. In
particular, this work is supported by the open sourced recommendation library RecBole, so that
the entire running details or studied settings can be reproduced with RecBole.
The most relevant study to our work is the DaisyRec framework [107], which has extensively

studied various settings and their implementations. Some of our experimental settings or design
are borrowed from Reference [107]. For example, we follow Reference [107] to collect a number
of top-tired recommender system papers for identifying feasible options, and calculate the propor-
tions of different options. As a major difference in researchmethodology, their work focuses on the
absolute performance of recommendation algorithms, while our work mainly considers the per-
formance rankings and explores the effect of different settings on performance rankings. Besides,
they only used one neural recommendation algorithm in comparison, and several recent settings
or issues were not considered (e.g., non-sampling VAE loss, sampled metrics, beyond-accuracy
metrics, and temporal data leakage).
This work is a significant extension of a previously published short paper [138], where it has

studied only three factors based on the Amazon datasets. As a comparison, currently, we study six
factors and use more datasets from other domains. This work presents new experimental design
or results compared with Reference [138], even for the same factor.

3 OVERALL EXPERIMENTAL SETTINGS

In this section, we first present an overview of the procedure to conduct our study for evaluating
top-N recommendation algorithms, and then describe the details to set up our experiments.

3.1 Studied Factors

In this work, we study three important aspects for evaluating top-N recommendation algorithms,
including evaluation metrics, dataset construction, and model optimization. The three aspects play

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

A Revisiting Study of Appropriate Offline Evaluation 32:9

a key role in conducting empirical comparison of recommendation algorithms, which correspond
to three different components ofmeasure, data, and optimization in recommender systems [97], re-
spectively. In recent literature, there is substantial divergence or even debate on the related factors
from the three aspects. Therefore, our study is targeted on the divergent options for each aspect
and aims to provide important guidelines to instruct the evaluation of recommender systems.
For the first aspect of evaluationmetrics, we study how to select appropriate evaluationmeasure-

ments for the recommendation performance. For top-N recommendation algorithms, it typically
returns a ranked list of items that are of potential interests to a target user. The evaluation task
therefore becomes how to measure the recommendation quality according to the generated recom-
mendation list of an algorithm. It has been widely recognized that evaluation measures are partic-
ularly important to consider when designing the experiments in recommender systems [99]. Fol-
lowing existing studies [64, 107], we investigate the consistency of evaluation metrics and impact
of sampled metrics. Although the first factor has been widely studied, prior studies usually adopt a
small number of comparison algorithms [107] or mainly consider non-neural algorithms [78, 85].
With the increasing number of neural recommendation algorithms, it is necessary to revisit this
factor using a considerable number of neural algorithms. The second factor recently attracts much
concerns from the research community. Several studies find that it is biased or improper to use
sampled metrics for performance comparison [64, 69].

For the second aspect of dataset construction, although it is a fundamental step to set up the
experiments, there is still not a widely recognized standard for selecting or generating the evalu-
ation sets. A large number of research papers simply adopt two or three datasets for evaluation.
It lacks a thorough evaluation with more diverse datasets [107]. Furthermore, even for the same
dataset, there are also many options to preprocess and split the datasets.With different options, the
comparison results might become substantially different [107]. Based on these considerations, we
aim to perform a systematic study on the possible strategies of dataset selection and preprocessing

and dataset splitting [54, 138]. The first factor focuses on how to select and preprocess the datasets,
and the second factor discusses how to derive evaluation sets by splitting the datasets. It aims to
derive some empirical suggestions for preparing datasets in evaluation.
For the third aspect of model optimization, we study how to appropriately optimize the recom-

mendation algorithms. Compared with traditional recommendation algorithms, model optimiza-
tion plays a more important role for neural-based algorithms in practice [131], since there are
more components or parameters to tune. Indeed, this aspect is highly related to the issue of repro-
ducibility of recommendation algorithms, which has become the worrying concern in the field of
recommender systems [25, 91, 92]. In this aspect, we study the impact of two important factors,
namely objective function and hyper-parameter search. The first factor focuses on the suitable opti-
mization loss function for recommendation algorithms, and the second factor focuses on how to
set the hyper-parameters in an effective and efficient way.

3.2 Paper Selection with Option Categorization

In the above, we have introduced the three aspects with two factors for each aspect. For each
factor, existing works usually have diverse options for experimental setup. To revisit the debate
or divergence in existing works, we take a literature survey approach to analyzing and comparing
the widely used options from the recently published recommender system papers of top-tiered
conferences.
Following Reference [107], we focus on eight conferences, including KDD, SIGIR, WWW, IJCAI,

AAAI, WSDM, CIKM, and RecSys, and collect 93 representative papers1 on the topic of top-N

1Due to the limit for the number of the references, we do not cite all the collected papers in this article but present the

detailed information of them at the link: https://github.com/RUCAIBox/RecSysEvaluation.

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

https://github.com/RUCAIBox/RecSysEvaluation

32:10 W. X. Zhao et al.

Table 2. The Categorization of Experimental Settings in the Collected Papers

Aspect Factors Options Papers

Evaluation

metrics

Metrics

incorporated

in evaluation

Recall [14, 33, 52, 56, 67, 70, 73, 77, 83, 105, 111–114,

117, 130, 134, 135, 140]

Hit [5, 19, 22, 27, 31, 32, 37, 45, 47, 56, 74, 81, 82, 108,

115, 119–121, 132, 134, 136, 137]

NDCG [5, 14, 19, 27, 31–33, 45, 47, 52, 56, 68, 73, 74,

81–83, 105, 108, 112–115, 117, 119–121, 130, 132,

134]

AUC [19, 83]

Beyond-accuracy [37, 140]

Metric

calculation

Sampled [5, 27, 32, 47, 52, 70, 74, 77, 81, 82, 108, 115, 120,

121, 132, 136]

Non-sampled [14, 19, 22, 31, 33, 45, 56, 67, 68, 105, 111–114,

119, 128, 134, 135, 137, 140]

Dataset

construction

Number of

used datasets

≥3 [5, 14, 22, 27, 32, 33, 37, 45, 52, 68, 73, 74, 81–83,

108, 111–114, 117, 119, 130, 132, 135, 137]

<3 [19, 31, 47, 56, 67, 70, 77, 105, 115, 120, 121, 128,

134, 136, 140]

Dataset

filtering

n-core filtering [5, 14, 19, 27, 31, 33, 37, 45, 47, 56, 67, 70, 73, 74,

108, 112, 113, 115, 121, 128, 130, 132, 134, 135,

137, 140]

Original

or neglection

[32, 52, 68, 77, 81–83, 105, 111, 114, 117, 119, 120,

136]

Dataset

splitting

RO_RS [14, 33, 52, 56, 67, 68, 73, 74, 77, 111–114, 117,

128, 130, 134–136]

RO_LS [22, 37, 45, 70, 81–83, 105, 120, 137]

TO_RS [19, 117, 140]

TO_LS [5, 27, 31, 32, 45, 47, 108, 115, 119, 120, 132]

Model

optimization

Objective

function

BPR-based [5, 14, 19, 31, 32, 45, 56, 67, 77, 83, 105, 108, 112–

114, 119–121, 128, 130, 134]

BCE-based [22, 27, 47, 52, 68, 74, 81, 111, 117, 132, 135, 140]

Hyper-parameters Reported [5, 19, 22, 33, 67, 68, 70, 73, 111, 113, 117, 128,

134, 137]

Not reported [14, 27, 31, 32, 45, 47, 52, 56, 74, 77, 81–83, 105,

108, 112, 114, 115, 119–121, 130, 132, 135, 140]

recommendation during the period of year 2017–2020. Our selection criterion is mainly based on
the citation count, while takingmore diverse algorithms into consideration. For each paper, we first
identify the possible options for the six studied factors from the three aspects. Then, we categorize
or group similar options and then assign the paper to the corresponding option slot. In this way,
we obtain the major options to set up the six factors.

Based on this collection and the corresponding categorization, we can compare and analyze the
divergence of options for each factor. The categorization of the paper collection is listed in Table 2.

3.3 Experimental Settings

To examine the impact of these key factors, we conduct large-scale experiments to compare and
analyze different options of them. We first introduce the details of datasets and algorithms and
then describe the experimental protocols of our study.

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

A Revisiting Study of Appropriate Offline Evaluation 32:11

Table 3. Statistics of the Used Datasets for Our Experiments

Dataset ML-1M Netflix Last.FM Yelp AMZ_Movie AMZ_Elec AMZ_Video AMZ_Toys

original

#User 6,040 248,873 1,893 1,542,657 1,881,064 3,510,477 688,894 1,151,803

#Item 3,629 17,493 17,633 202,668 189,334 433,476 46,944 305,729

#Interaction 836,478 5,754,113 92,834 6,102,153 4,034,282 6,466,395 1,094,400 1,943,977

Sparsity% 96.1838 99.8678 99.7219 99.998 99.9989 99.9996 99.9966 99.9994

#AIU 138.51 23.12 49.07 3.96 2.14 1.84 1.59 1.69

#AII 230.56 328.96 5.27 30.11 21.31 14.92 23.31 6.36

5-core

#User 6,039 140,075 1,860 245,368 105,027 150,524 18,814 15,529

#Item 3,308 15,034 2,824 99,897 44,211 52,030 8,692 9,697

#Interaction 835,789 5,535,469 71,355 3,821,892 1,406,666 1,312,570 177,572 133,837

Sparsity% 95.8162 99.7371 98.6415 99.9844 99.9697 99.9832 99.8912 99.9111

#AIU 138.42 39.52 38.38 15.58 13.39 8.72 9.44 8.62

#AII 252.73 368.22 25.28 38.26 31.82 25.23 20.43 13.8

10-core

#User 6,034 103,286 1,798 90,211 26,969 13,456 1,782 828

#Item 3,124 12,370 1,508 50,667 18,564 8,361 1,448 811

#Interaction 834,449 5,269,251 62,376 2,521,784 762,957 2,34521 32,375 16,080

Sparsity% 95.5733 99.6876 97.6995 99.9448 99.8476 99.7915 98.7453 97.6054

#AIU 138.31 51.02 34.71 27.95 28.29 17.43 18.18 19.44

#AII 267.19 426 41.39 49.77 41.1 28.05 22.37 19.85

Timestamp ✓ ✓ × ✓ ✓ ✓ ✓ ✓

Rating ✓ ✓ × ✓ ✓ ✓ ✓ ✓

Domain Movie Movie Music Shopping Shopping Shopping Shopping Shopping

#AIU denotes the average number of interactions per user, and #AII denotes the average number of interactions per

item.

3.3.1 Datasets. By surveying the collected papers, we select eight representative datasets.
Among the eight datasets, MovieLens-1M, Netflix, Last.FM, and Yelp are mostly used by existing
works. Another four datasets are from the Amazon data collection [75], containing multiple do-
mains. The original Amazon data collection consists of 24 domains, and we follow Reference [138]
to select four representative domains with different characteristics. Next, we present the details of
the eight datasets.

• MovieLens-1M [42] is a widely used benchmark dataset in movie recommendations, which
contains 1,000,209 explicit ratings (an integer between 1 and 5) from 6,040 users on 3,629
movies.
• Netflix [7] is a large real-world movie dataset from Netflix, which is collected between No-
vember 1999 to December 2005. It contains 100,480,507 explicit ratings (an integer between
1 and 5) from 480,189 users on 17,770 movies.
• Last.FM [12] contains listening records of users from the online music system Last.fm. It
contains 92,834 clicks from 1,892 users on 17,632 music.
• Yelp is the Yelp Challenge Dataset released by Yelp, which contains user check-ins at local
businesses, together with user reviews and local businesses information network. It con-
tains 8,021,122 explicit ratings (an integer between 1 and 5) from 1,968,703 users on 209,393
businesses.
• Amazon Movies_and_TV, Electronics, Toys_and_Games, Video_Games [75] are ob-
tained from the Amazon review dataset in different categories. These datasets include a
significant amount of user-item interaction data.

We summarize the basic statistics of these datasets in Table 3. For the top-N recommendation, we
transform explicit feedback datasets into implicit feedback datasets by setting a binarized threshold
of 3. Overall, the selected datasets cover diverse domains and contain varying numbers of users,
items, and interaction records.

3.3.2 Comparison Algorithms. To carry out our experiments, we further select 12 top-N rec-
ommendation algorithms. Among them, 4 are non-neural algorithms, and 8 are neural algorithms.

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

32:12 W. X. Zhao et al.

According to the architecture, we categorize these 12 algorithms into five groups, namely tradi-
tional algorithms, MF-based algorithms, similarity-based algorithms, GNN-based algorithms, and
non-sampling algorithms.

(1) Traditional algorithms
• Popularity: This algorithm ranks items based on their popularity, evidenced by the num-
ber of interactions in the training set. This is a non-personalized algorithm.
• ItemKNN [1]: This is an item neighborhood-based collaborative filtering algorithm. It
exploits cosine item-item similarities to produce recommendation results.

(2) Matrix factorization-based algorithms
• SVD++ [62]: It is a variant of singular value decomposition, which projects users and items
into latent factors and reconstruct the interaction matrix.
• Bayesian Personalized Ranking-based Matrix Factorization (BPRMF) [90]: It is a
classic algorithm for learning pairwise personalized rankings from users’ implicit feedback
data.
• NCF [47]: It combines the MF algorithm with a MLP to learn the user-item interaction
function.

(3) Item similarity-based algorithms
• Factored Item Similarity Model (FISM) [60]: It is an item-based CF algorithm in which
the user preference vector is derived by the sum of historical item vectors instead of look-
ing up the user embedding matrix.
• Neural Attentive Item Similarity Model (NAIS) [46]: It generalizes the factored item
similarity model by employing an attention mechanism.

(4) Graph neural network-based algorithms
• Neural Graph Collaborative Filtering (NGCF) [113]: It adopts three GNN layers on
the user-item interaction graph, aiming to refine user and item representations via at most
three-hop neighbors’ information.
• Simplifying and Powering GraphConvolutionNetwork (LightGCN) [44]: It is a spe-
cial GNN-based algorithm for recommendation, which discards the feature transformation
and the nonlinear activation functions in the GCN aggregator.

(5) Non-sampling algorithms
• CDAE [118]: It is specifically optimized for implicit feedback recommendation tasks by
utilizing the idea of denoising auto-encoders (DAE).
• MultiVAE [72]: It extends variational and denoising autoencoders to collaborative filter-
ing using a multinomial likelihood.
• ENMF [15]: It is a recently proposed non-sampling neural recommendation algorithm. It is
a state-of-the-art algorithm for top-N recommendation that is only based on the historical
feedback information.

These algorithms are widely adopted as the comparison baselines in existing research, and well
cover themajor categories of recommendation algorithms. Another reason to select these baselines
is that they have released official implementation codes with optimization details.

3.3.3 Configuration and Implementation. To examine the impact of the options for the stud-
ied factors, we do not focus on specific recommendation performance of algorithms, since even
the same algorithm might have very different results under different settings. Instead, we mainly
consider the change of the overall ranking of different comparison algorithms. We introduce the
term “configuration” to denote a kind of combination for different settings of the studied factors.
In this way, our study is to measure and analyze how the rankings of recommendation algorithms

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

A Revisiting Study of Appropriate Offline Evaluation 32:13

change under different configurations. Given a configuration, we can obtain a ranked list of the
12 comparison algorithms, called performance ranking, according to the descending order of their
performance based on some metric. We next study how to measure the correlation or similarity de-
gree between two performance rankings. We consider two measures to quantitatively characterize
the correlation degree between two performance rankings:
•Overlap Ratio at top-k positions (OR@k).We compute the overlap ratio of top k algorithms

between two ranked lists:

OR@k (c1, c2) =

�
�
�
R (c1)
k
∩ R (c2)

k

�
�
�

k
, (1)

where c1 (or c2) is a configuration, R (c1)
k

(or R (c2)
k

) is the set of algorithms that are ranked at top

k positions under configuration c1 (or c2), and |R (c1)
k
∩ R (c2)

k
| is the number of algorithms in the

intersection set. It equal to 1 when there are totally the same algorithms that are ranked at top k .
In our experiments, we set k = 5, namely OR@5.
• Spearman Rank Correlation (SRC). SRC is commonly used to measure the association be-

tween two ranked lists:

SRC (c1, c2) = 1 −
6
∑

a∈A
(
r (c1)a − r (c2)a

)2
|A|3 − |A| , (2)

where A is the set of all compared algorithm (with size |A|), and r (c1)a is the ranking number of
algorithm a under configuration c1.
The first measure focuses on the top-ranked algorithms and the second measure focuses on the

overall rank correlation. In the comparison of recommendation algorithms, we might concern ei-
ther the top performers or the overall ranking. These two measures are able to describe the impact
of different options on the comparison of algorithms. To examine the effect of a studied factor, we
will accordingly generate multiple configurations by varying its possible settings. Then, we com-
pute the correlation degree between the rankings under two different configurations using the
above two measures. Finally, the correlation results will be averaged over multiple configuration
comparisons.

3.3.4 Experimentation with Recbole . To ensure the reliability and reproducibility of the re-
sults, we conduct all the experiments with a latest open sourced recommender system library,
RecBole2 [139]. It is a unified, comprehensive and efficient framework that has integrated 78 rec-
ommendation algorithms and 28 datasets, covering all the comparison algorithms and datasets in
our experiments. All the algorithms are released after a strict code review and test process. In this
section, we give a brief introduction of how to set the studied factors to reproduce the experimental
results with RecBole and then present some examples.

Set the studied factors in Recbole . For this work, RecBole has supported most of the our studied
options, and our experiments can be implemented in a unified framework, making the results
reproducible. A detailed introduction of the library can be found in the paper for RecBole [139].
The studied factors can be easily configured in command line parameters or configuration files.

For example, the target metrics can be set by themetrics parameter. Besides, the splitting of dataset
and candidate sampling strategy can be set via the eval_settinд parameter that support all the five
splitting methods and three candidate generation methods. For dataset preprocessing, long-tailed
users and items can be further filtered by themin_user_num andmin_item_num parameter. We
summarize the detailed commands for various setting with RecBole in Table 4. In the following,

2GitHub Page: https://github.com/RUCAIBox/RecBole.

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

https://github.com/RUCAIBox/RecBole

32:14 W. X. Zhao et al.

Table 4. Example usage of RecBole with Various Settings for Evaluating Recommender Systems

Factors Options Command

Dataset ML-1M, Yelp, Netflix, Amazon, Pinterest, Taobao, etc. -dataset=Yelp

Algorithm BPR, ItemKNN, NCF, NGCF, ENMF, NAIS, etc. -model=BPR

Filtering Filter user of item under any number of integer
-min_user_num=5
-min_item_num=5

Splitting RO_RS, RO_LS, TO_RS, TO_LS, etc.
-eval_setting=RO_RS,full

Cancidates full, uni100, uni500, uni1000, pop100, pop500, etc.

Metrics Recall, NDCG, MAP, MRR, Hit, Precision, AUC -metrics=[‘‘Recall’’,‘‘GAUC’’]

we will present two examples on how to run customized data and perform hyperparameter search
with RecBole.

Examples of configuration. With Recbole, we can either set the parameters of evaluation with a
single-line command or through a readable configuration file. In this part, we present an illustrative
example for how to train and evaluate algorithmswith customized settings to reproduce the results.
For example, we can train and evaluate BPR algorithm on ML-1M dataset with TO_RS splitting by
the following command:

python run_recbole.py --dataset=ml-1m --model=BPR --eval_setting=TO_RS,full

Furthermore, we can set filtering strategy and metrics detailedly in a YAML file as

eval_setting: TO_RS,full
min_user_inter_num: 5
min_item_inter_num: 5
metrics: ["Recall","NDCG","Hit"]

Then run the following command to obtain the results:

python run_recbole.py --dataset=ml-1m --config_files=config.yaml --model=BPR

To find optimal hyper-parameters, we can configure the hyper-parameters and corresponding
range in a file with the following format:

learning_rate choice [5e-5,1e-4,5e-4,1e-3]
dropout_prob choice [0.0,0.1,0.3]

And the optimal hyper-parameters and evaluation results can obtained by the following command:

python run_hyper.py --dataset=ml-1m --model=NGCF --params_file=range.hyper

Unless specified, the results of the comparison algorithms are reportedwith an exhaustive hyper-
parameter search. To support this work, we have set up a GitHub page at https://github.com/
RUCAIBox/RecSysEvaluation that includes all the possible commands or scripts to reproduce all
the results with RecBole.

4 EVALUATION METRICS

In this section, we study the impact of the settings for evaluation metrics, which is a fundamental
factor to be determined before evaluation.

4.1 Consistency of Evaluation Metrics

In the literature, various metrics have been proposed to evaluate the performance of recommenda-
tion algorithms [101]. However, it is common that a research paper only adopts a small number of

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

https://github.com/RUCAIBox/RecSysEvaluation

A Revisiting Study of Appropriate Offline Evaluation 32:15

metrics for evaluation (e.g., limited to paper length), either based on subjective selection or follow-
ing previous work. In this part, we first review nine widely used evaluation metrics, and analyze
their impact on the performance rankings of recommendation algorithms.

4.1.1 Reviewing Evaluation Metrics. In principle, top-N recommendation can be considered as
a ranking task [64], where a good recommendation algorithm should be able to rank proper items
at top positions. In this manner, many ranking-oriented measures are used for evaluating rec-
ommender systems. Here we give a simple review of several widely used evaluation metrics for
recommendation.
Specifically, suppose there is a set of items to be ranked. Given a user u, let R̂ (u) represent a

ranked list of items that an algorithm produces, and R (u) represent a ground-truth set of items
that user u has interacted with. For top-N recommendation, only top-ranked items are important
to consider. Therefore, we simplify the evaluation scenarios by truncating the recommendation
list with a length k . Hence, the following evaluation metrics are defined and computed based on
this truncated list. We present the specific formulations for different evaluation metrics as follows:

• Truncated Precision at top k positions (Precision@k) [101]: It is a metric that computes
the fraction of correct items by an algorithm for top k recommendations:

Precision@k =
1

|U |
∑
u ∈U

|R̂ (u) ∩ R (u) |
|R̂ (u) | , (3)

where |R̂ (u) | represents the item count of R̂ (u) and U denotes the user set with size |U |.
Here, |R̂ (u) | = k .
• Truncated Recall at top k positions (Recall@k): It is a metric for computing the fraction
of relevant items out of all relevant items:

Recall@k =
1

|U |
∑
u ∈U

|R̂ (u) ∩ R (u) |
|R (u) | , (4)

where |R (u) | represents the item count of R (u).
• F1: F1-measure is the harmonic mean of precision and recall, which is a widely usedmeasure
in recommendation:

F1 =
2 × Precision × Recall
Precision + Recall

, (5)

where we can compute F1 according to truncated or original precision/recall values.
• Hit-Ratio at top k positions (HR@k): Hit-Ratio is an all-but-one measure used in recom-
mendation [35]. If there is at least one item that falls in the ground-truth set, then we call it
a hit. HR@k is calculated in the following way:

HR@k =
1

|U |
∑
u ∈U

I
(
R̂ (u) ∩ R (u) � ∅

)
, (6)

where I (·) is an indicator function and ∅ denotes the empty set.
• Mean Average Precision (MAP): It measures the precision at all ranks that hold a relevant
item [64]:

MAP =
1

|U |
∑
u ∈U

1

|R (u) ∩ R̂ (u) |
|R̂ (u) |∑
j=1

I
(
R̂ j (u) ∈ R (u)

)
· Precisionu@j, (7)

where R̂ j (u) is the jth item in the recommendation list of R̂ (u).

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

32:16 W. X. Zhao et al.

• Mean Reciprocal Rank (MRR): It computes the reciprocal rank of the first relevant item
found by an algorithm:

MRR =
1

|U |
∑
u ∈U

1

rank∗u
, (8)

where rank∗u is the rank position of the first relevant item found by an algorithm for a
user u.
• Normalized Discounted Cumulative Gain (NDCG): It is a metric from information re-
trieval, where positions are discounted logarithmically [95]. It accounts for the position of
the hit by assigning higher scores to hits at top ranks [47]:

NDCG =
1

|U |
∑
u ∈U

1

Z

|R̂ (u) |∑
j=1

2I (R̂j (u)∈R (u)) − 1
log2 (j + 1)

, (9)

where R̂ j (u) stands for the item recommended in at jth position, and Z is a normalized
factor that denotes the ideal value of DCG given R (u). Note that, for implicit feedback, we
only consider two relevance levels, namely relevant and non-relevant here.
• AUCmeasures howmany positive items are ranked above negative items, and is normalized
by the total number of possible pairs. Its value is 1 for a perfect ranking (i.e., each positive
item is ranked above all negative items):

AUC =
1

|U |
∑
u ∈U

1

|R (u) |(|I | − |R (u) |)
∑

j ∈R (u)

∑
j′�R (u)

I (p (j) > p (j ′)), (10)

where p (j) stands for the ranking position of item j.

Besides the above metrics, researchers have an increasing attention on beyond-accuracy met-
rics [3], which are designed to measure the performance of non-accuracy aspects for recom-
mender systems, including novelty [140], diversity [94], unexpectedness [76], serendipity, and
coverage [101]. Here, we mainly consider using two widely used beyond-accuracy metrics, namely
novelty and coverage. More metrics can be found in Reference [101].

• Novelty: This metric advocates the recommendations with novel items that are different
from existing ones. Following [101], it can be defined as follows:

Novelty@k =
1

|U |
∑
u ∈U

∑
j ∈R̂ (u)

log(pop(R̂ j (u)) + 1)

k
, (11)

where R̂ j (u) represents the jth item recommended to user u, and pop(R̂ j (u)) represents the

popularity of item R̂ j (u) (e.g., the number of interactions related to R̂ j (u)). In general, novelty
can be defined in other ways, such as the proportion of unknown items in the prediction list
for each user. In this work, we adopt the above simple version that calculates the popularity
of recommended items. Here, a smaller is better is preferred for Novelty.
• Coverage: Coverage targets on the whole recommender systems instead of a single recom-
mendation list. There are three kinds of coveragemeasures proposed in existing studies [101],
including item space coverage, user space coverage, and genre space coverage. Following
Reference [101], we select item coverage for study, since it is more frequently used in our
collected papers. It is defined formally as

Coveraдe =
|⋃u ∈U R̂ (u) |

|I | , (12)

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

A Revisiting Study of Appropriate Offline Evaluation 32:17

Fig. 1. Visualization of metric correlations on SRC (in purple) and OR@5 (in blue). Each cell indicates the

computed SRC or OR@5 score between two metrics (a darker color indicates a larger correlation). We omit

the@10 postfix for all metrics except AUC.

where |I | represents the count of all items. In a real recommender system, there are usually
a large number of items to be recommended. Coverage encourages the algorithm to recom-
mend more diverse items, so it can be an indicator of algorithm’s capacity in covering more
items of the item set. Here a larger value is preferred for Coverage.

4.1.2 Research Question and Experimental Setup. Given a number of available evaluation met-
rics, we study the following two questions:

• Whether different metrics lead to similar performance rankings of recommendation
algorithms?
• How to choose proper metrics for evaluating recommendation algorithms?

To study the above questions, the 12 algorithms (Section 3.3.2) are tested on the eight datasets
(Section 3.3.1). Specifically, for each dataset, we run all the compared algorithms to obtain their
performance scores and then produce a ranked list of algorithms for each metric. Then, for each
pair of two metrics, we compute the SRC (Equation (2)) and OR@5 (Equation (1)) between the
corresponding two ranked lists. We repeat this process on each dataset and average the ranking
correlation scores as the consistency degree between two metrics. In this way, we can derive a
correlation heatmap among all pairs of evaluation metrics.
The detailed configuration for the rest factors is listed below. Yelp and Netflix datasets are pro-

cessedwith 10-core filtering as they are very large, and the other datasets are processedwith 5-core
filtering. The interaction of each user is ordered by timestamp, and the entire dataset is split to
train/validation/test sets by a ratio of 0.8/0/1/0.1. To optimize the algorithm, we employ the valida-
tion set for parameter search. To generate the candidate item list, we treat all the items that a user
has not interacted with as candidates. All the metrics are computed based on a truncated length
of 10, except AUC, which is computed on the whole list.

4.1.3 Observation and Discussion. Figure 1 presents the average correlation results among dif-
ferent metrics on SRC and OR@5, where a darker color indicates a stronger correlation. We have
the following observations:

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

32:18 W. X. Zhao et al.

(1) Overall, the heatmaps in both figures reveal that the metrics at the top left (Recall, MRR,
NDCG, HR, Precision, and MAP) have higher correlations with each other (called the first part),
while the three metrics at the bottom right have relatively weak correlations with the rest metrics.
Interestingly, the first part of metrics are further divided into three dense groups, namely {Recall },
{MRR,NDCG,HR} and {Precision,MAP }, where the metrics in each group have a correlation de-
gree that is close to one. In general, it is suggested that a research study in recommender system
should use as more metrics as possible. However, it is usually infeasible to report the results of all
the metrics due to space limitation. This finding indicates that if the number of adopted metrics
are limited, then we should cover different groups and select representative metrics on the whole.
Actually, similar correlation results are also found in previous studies [107, 109]. Sun et al. [107]
found that Recall tends to be poorly correlated with other metrics, while the rankings by Precision,
HR, MAP, MRR, and NDCG show a fairly strong correlation.
(2) Among the rest metrics (AUC, Novelty, and Coverage), AUC is a commonly adopted metric

in industry [106]. However, we do observe that recent recommender system papers often neglect
this metric for evaluation. As we see, it has very weak correlations with other traditional metrics
(the part of metrics at the top left). A possible reason is that those ranking metrics are computed
with a small cutoff that only concerns the top-k results. In the extended experiments (reported
in the Appendix from the website of this work), we find that the SRC between AUC and NDCG
increases from 0.11 to 0.73 when the cutoff length varies from 10 to 1000: The SRC value is still
not high for a large cutoff length of 1000. It indicates that AUC (a pairwise metric) is essentially
different from other ranking-based metrics. Therefore, the above results suggest that AUC should
be used as evaluation metrics, since it measures the recommendation results in a substantially
different way compared with other metrics.
(3) As for the Novelty and Coverage metrics, both of them show a relatively weak positive cor-

relation with the other metrics (shown in the two bottom rows of the heatmaps). This finding
has also been reported in previous studies [37, 140], where beyond-accuracy metrics take a dif-
ferent perspective to evaluate the recommendation quality. In recent studies, there are increasing
interests in beyond-accuracy metrics [3], since it has been found that beyond-accuracy metrics
are particularly useful to guide the improving of recommendation algorithms in non-accuracy as-
pects, such as diversity and novelty of recommendation [109]. We suggest using both accuracy
and beyond-accuracy metrics in these works.

4.2 Sampled Metrics

To test the performance of a recommendation algorithm on a given dataset, it will be time-
consuming to take all the items from the item set as the candidates when the size of item set
is large. An alternative way is to sample a small set of items as irrelevant items, so that the per-
formance scores can be computed based on a partial list of the ground-truth item and sampled
negative items. Such a way is usually called sampled metrics [64]. Now, sampled metrics have been
widely used to reduce the time cost of enumerating the entire item set. However, more recently,
several studies [9, 64, 69] raised serious concerns on sampled metrics and argued that sampled
metrics tend to lead to inconsistent ranking results. In this part, we investigate into the impact of
sampled metrics on performance ranking, and study how different configurations affect the final
comparison results.

4.2.1 Sampling Method. To set up our experiments, we first consider the possible sampling
methods for sampled metrics. Actually, the sampling-based evaluation was first used in Reference
[62], where 1,000 movies are sampled uniformly from the item set with the ground-truth movie for
each user. We refer to this method by uniform sampling. Besides, there are also some variants that

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

A Revisiting Study of Appropriate Offline Evaluation 32:19

are either user based [49] or popularity based [84]. Here we mainly consider uniform sampling
and popularity-based sampling. To configure the sampling method, we can also prepare different
numbers of negative items, and vary the number of negative items in the set {100, 200, 500, 1000}.
Note that our sampling method corresponds to the test stage instead of the learning stage. The
sampling issue related to the learning stage will be left as future work.
It has been found that existing sampling methods tend to introduce bias in performance ranking.

A few amendment measures have been proposed to alleviate this issue [64]. Here we adopt the
amendment measure of debiased estimator from Reference [64] as an improved sampling method:

f̂ (r̃) = f

(
1 +

(n − 1) (r − 1)
m

)
, (13)

where r represents the ranking of positive instance on sampled candidates, r̃ is the correspondingly
estimated ranking for whole candidates,m and n denote the amount of candidates under sampling
and no-sampling respectively, and f (·) represents any metric that calculates on the rankings.

4.2.2 Research Question and Experimental Setup. Given the concerns on sampled metrics [64],
we aim to study the following research questions:

• whether sampled metrics will lead to different performance rankings compared with non-
sampling ranking?
• how different factors of the sampling method affect the performance ranking?

For these research questions, we consider the two kinds of sampling methods, namely uniform
sampling and popularity-based sampling (Section 4.2.1), and use different numbers of irrelevant
items in the set {100, 200, 500, 1000}. Given a combination of sampling method and negative num-
ber, we can derive a candidate list of items for each dataset, rank different algorithms according
to their performance on both sampled ranking list and full-ranking list, and compute the SRC and
OR@5 values between the two kinds of performance rankings. We repeat this process on each
dataset and report the average results. Moreover, we adopt an amendment function on the sam-
pled metrics (Equation (13)) to evaluate the performance under amendment for comparison.

Since previously we have found high correlations among some metrics, we only use three rep-
resentative metrics (Recall@10, NDCG@10, AUC) for ranking. The rest procedures (e.g., data pre-
processing) follows the same way as reported in Section 4.1.2.

4.2.3 Observations and Discussion. Figures 2 and 3 present the results of SRC values and OR@5
on eight datasets respectively, where each dataset corresponds to four lines containing two sam-
pling methods and two debiased versions according to Equation (13). We show the changing trend
across different numbers of negative items. The following observations can be found as follows:
(1) First, for uniform sampling (Figure 2), almost all the SRC scores show an increasing trend

when we enlarge the size of candidates with uniform sampling (red lines in eight subfigures). After
examining the SRC scores, we can find that only Last.FM dataset shows a strong correlation score
(>0.9), while the rest datasets show a relatively weak correlation score. Therefore, it is suggested
that the entire item set should be considered when testing. Similar findings have been reported
in References [64, 69]. However, these studies mainly focus on theoretical analysis, and they only
consider a small number of algorithms for comparing the performance ranking. Our results provide
empirical evidence with a number of recommendation algorithms on large-scale datasets for this
finding.
(2) Second, the amendment measures (Figure 2) seem to have limited capacity in eliminating the

ranking bias yielded from incomplete candidate lists. Specifically, when the original SRC is high
(>0.6), the debiased SRC is equal to or lower than it; while, when the original SRC is relatively low,

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

32:20 W. X. Zhao et al.

Fig. 2. SRC results of the performance ranking with different sizes of candidates on eight datasets.

the debiased SRC scores are substantially improved. Based on these empirical results, it seems such
a corrected estimation method cannot fully resolve the issue of sampled metrics. We speculate that
the original proof and derivation are based on strict assumptions and limited to some specific kind
of algorithms. The effectiveness of target sampling and the effect of target sets are also discussed
in Reference [9], and they find that tie analysis is more informative than traditional statistical
significance tests in comparative evaluation.
(3) Last, from the OR@5 results (Figure 3), the change of these lines are more mitigatory than

that for SRC results in Figure 2. Major findings from SRC results are similar for OR@5 results. It is
interesting to see that there is little impact on top-ranked algorithms if a large number of negative
samples are used. Overall, uniform sampling leads to a more similar ranking compared with the
full-ranking list (red line is above or overlaps with the blue line in five of the eight datasets). Except
the last two datasets (AMZ_Toys andAMZ_Elec), the rest datasets correspond to a value equal to or
larger than 0.8, whichmeans that four of the top five algorithms in full-ranking comparison remain
among the top five positions with sampled metrics on average. These findings might suggest that
sampled metrics mainly affect the performance of weak recommendation algorithms.

5 DATASET CONSTRUCTION

In this section, we study the impact of different dataset construction strategies on performance
evaluation. Data construction refers to a series of steps on how to select and preprocess the original
data and construct the training, validation, and test sets.

5.1 Dataset Selection and Preprocessing

As the first step, to construct the evaluation sets, we first need to select the datasets and make
proper preprocessing on original data copies. Before our discussions, we first make a brief review
on existing evaluation datasets.

5.1.1 Existing Evaluation Datasets. By taking a thorough examination of the collected recom-
mender system papers, we find that each paper conducts the evaluation with 2.9 public datasets

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

A Revisiting Study of Appropriate Offline Evaluation 32:21

Fig. 3. OR@5 of the performance ranking with different sizes of candidates on eight datasets.

on average. Among these papers,3 27% of the papers use more than three datasets, and 14% of
the papers only report the performance on a single dataset. According to our statistics, ML-1M,
Last.FM, Netflix, and Yelp are the four most frequently used datasets. Besides, Amazon datasets are
also widely used. As mentioned in Section 3.3.1, our experiments include the four most frequently
used datasets and four Amazon datasets of different domains to cover both diverse and frequent
datasets. It is suggested that researchers should use more diverse datasets for evaluation [107, 138].

To preprocess the datasets, a commonly used strategy is to filter users or items with a very small
number of interactions, and only keep users or items with at least n interactions. Such a strategy is
usually calledn-core filtering. Based on our paper collection, 44% of the papers offer no information
about the preprocessing step, and 34% of the papers adopt 5-core or 10-core filtering. However,
even for those with n-core filtering, there are also inconsistent processing methods: Some studies
perform the filtering once and other studies repeat removing users or items until all the users or
items have at least n interactions. In this work, we adopt the latter approach. We also find that
some papers [123, 132] only perform the filtering in an unsymmetrical way, e.g., only for users or
items. Besides, several papers [27, 34] set a relatively large value for n (e.g., n = 25, 30), which can
derive a more dense dataset. However, it might significantly change the overall distributions of
user-item interactions of the original dataset.

5.1.2 ResearchQuestion and Experimental Setup. Based on the above discussions, we study the
following two research questions:

• How do different data filtering strategies affect the performance ranking?
• How to select proper datasets for evaluation?

To conduct the studies, for each dataset, we first consider applying one of two filtering strate-
gies {5-core, 10-core} to obtain the filtered datasets. Then, for each of the two filtering strategies,
we compute and report their ranking correlation (using the SRC measurement in Equation (2))
with the original data without filtering. Such a setting essentially follows Reference [107], while

3Throughout this article, the reported percentage is calculated based on our collected papers. Please refer to the GitHub

page for a complete list of these papers.

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

32:22 W. X. Zhao et al.

Fig. 4. SRC results of the performance ranking correlation on eight datasets. For each dataset, we compare

the rankings with filtered or original datasets.

we adopt the overall correlation measurement with more comparison algorithms. We report the
results with three representative metrics (Recall@10, NDCG@10, and AUC) for ranking. The rest
setup follows the same way as reported in Section 4.1.2.

5.1.3 Observations and Discussion. Figure 4 presents the SRC values on eight datasets, where
each dataset corresponds to the comparisons between different filtering strategies: no-filtering vs.
5-core filtering and no-filtering vs 10-core filtering.
The following observations can be found as follows:
(1) First, the two filtering strategies seem to lead to very different rankings for four of the eight

datasets (bottom part), especially on the Amazon electronic dataset. The major difference between
different processed data copies lies in the proportion of infrequent users or items and their sparsity
levels. To show this, we present the detailed statistics of the eight datasets in Table 5. We can
see that different filtering strategies can significantly change the original data characteristics and
distributions. For example, the number of contained users will be dramatically reduced, and the
overall sparsity levels seem to have substantial variations. In particular, it can be observed that
the performance with respective to AUC is less sensitive (except the Amazon electronic dataset)
for the filtering strategies than the other metrics. Such an observation is somehow related to our
previous finding in Section 4.1: AUC seems to have a weak correlation with the other metrics.
(2) It is relatively difficult to draw a conclusion on the characteristics of the datasets that are

relatively insensitive to the filtering strategies. Empirically, we find that the change of the measure
#AI I
#AIU (computed by the ratio between the average number of interactions per item and the average
number of interactions per user) are indicative of the ranking correlations to some extent. As
shown in Table 5, it seems that the less insensitive datasets (with large correlation values) have
relatively smaller values for #AI I

#AIU . Such a measure reflects the variation of the sparsity levels from
the perspectives of item and user, respectively. A more “stable” dataset tends to have a value of
#AI I
#AIU more close to 1, which means that the distribution of interactions are balanced in terms of

both users and items. Given a dataset with a large value #AI I
#AIU , the original data distribution is likely

to change if data filtering strategies apply, which may further affect the performance ranking.

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

A Revisiting Study of Appropriate Offline Evaluation 32:23

Table 5. Detailed Statistics of Eight Datasets under Different Filtering Strategies

Dataset ML-1M Last.FM AMZ_Toys Yelp AMZ_Movie AMZ_Elec AMZ_Video Netflix

original

#User 6,040 1,893 1,151,803 1,542,657 1,881,064 3,510,477 688,894 248,873

Sparsity% 96.1838 99.7219 99.9994 99.998 99.9989 99.9996 99.9966 99.8678

#AII/#AIU 1.66 0.11 3.76 7.6 9.96 8.11 14.66 14.23

5-core

#User 6,039 1,860 15,529 245,368 105,027 150,524 18,814 140,075

Sparsity% 95.8162 98.6415 99.9111 99.9844 99.9697 99.9832 99.8912 99.7371

User Drop% 0.02 1.74 98.66 84.1 94.42 95.72 97.27 43.72

#AII/#AIU 1.83 0.66 1.6 2.46 2.37 3.24 2.16 9.32

10-core

#User 6,034 1,798 828 90,211 26,969 13,456 1,782 103,286

Sparsity% 95.5733 97.6995 97.6054 99.9448 99.8476 99.7915 98.7453 99.6876

User Drop% 0.1 5.02 99.93 94.16 98.57 99.62 99.74 58.5

#AII/#AIU 1.93 1.19 1.02 1.78 1.45 1.61 1.23 8.35

The percentage of removed users and the ratio between average interaction per item (#AII) and average interaction per

user (#AIU) are listed for each dataset.

In existing studies [2, 107, 138], researchers suggest using multiple diverse datasets (e.g., more
domains [138] and more sparsity levels [2]) for evaluating recommender systems. Note that the
four Amazon datasets are selected based on the correlation results from Reference [138], where
they find that there are four coherent groups (we select one representative dataset from each
group). Based on these studies, we further experimentally find that different data filtering strategies
have substantial effect on performance ranking, depending on the characteristics of the specific
datasets. In practice, we suggest the researchers use multiple datasets for evaluation, considering
domain, sparsity and other data characteristics. It is also suggested that we should be careful to
apply the data filtering strategies, which will change the data characteristics and potentially lead
to different performance ranking results. More recently, there are also several studies that attempt
to analyze the characteristics of evaluation datasets in recommender systems and their effect on
the recommendation algorithms [21, 26]. The readers can refer to these studies for a deep under-
standing of dataset effect for evaluating recommender systems.

5.2 Dataset Splitting

Data splitting aims to divide the original data into training, validation and test sets, having im-
portant impact on performance ranking [54, 57]. The major limit of previous studies is that only
a small number of comparison algorithms are used. Here, we revisit this factor and conduct the
study with more compared algorithms.

5.2.1 Splitting Methods. To split the dataset, we need to consider two processing steps, namely
data ordering and splitting. For data ordering, we can consider either an ordering of randomly
shuffled data and a chronological ordering of interaction data. For splitting, we can consider either
ratio-based splitting or leave-one-out splitting (a special case of the ratio-based splitting). Follow-
ing References [107, 138], we consider the following four combinations for comparison:

• Random Ordering Ratio-based Splitting (RO_RS). It first arranges the interactions of a
user randomly, and then splits the sorted sequence into three parts for training, validation
and test, respectively, according to predefined ratio (e.g., 0.8/0/1/0.1).
• Random Ordering Leave-one-out Splitting (RO_LS). It first arranges the interactions
of a user randomly, and then selects one ground-truth item as test set and another one as
validation set, while the rest items are considered as training set.
• Temporal Ordering Ratio-based Splitting (TO_RS). It first sorts the interactions of a
user by timestamp, and then splits the dataset into three parts for training, validation and
test, respectively, according to predefined ratio (e.g., 0.8/0/1/0.1).

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

32:24 W. X. Zhao et al.

Fig. 5. An illustrative example for four splitting strategies. The user has interacted with 10 items. The times-

tamp of each interaction is denoted by t and a smaller index indicates a smaller timestamp. We use normal,

dash-lined and grey boxes to denote the training, validation and test sets, respectively. This figure is reused

from Reference [138].

• Temporal Ordering Leave-one-out Splitting (TO_LS). It first sorts the interactions of a
user by timestamp, and then selects one ground-truth item as test set and another one as
validation set, while the rest items are considered as training set.

We present an illustrative example for the four splitting strategies in Figure 5. Based on our sta-
tistics, 90% of the papers use one of the four splitting methods, where RO_RS is the frequently used
splitting [107] and leave-one-out splitting becomes increasingly more common in experiments. In
existing time-based splitting methods, splitting is mainly performed based on relative time, i.e.,
time index. A recent study [58] argues that global or absolute timestamps should be used when
considering splitting the data: The splitting should be conducted on the whole dataset instead of
each user. Specifically, each interaction in a dataset should be assigned by the global timeline, so
that it can ensure that all the test instances fall behind any training instance in time. Following
this suggestion, another possible setting is to split the interaction data according to global times-
tamps. However, we find such a splitting way is easy to lead to cold-start users. For example, about
40% users do not appear in the training set for Netflix and AMZ datasets by a split ratio of 9:1 on
the global timeline. Since our comparison methods are not specially designed for cold-start recom-
mendation, it may be meaningless to evaluate their performance under the globally temporal split.
Considering this, we leave a deep analysis with the effect of global time splitting as future work.

5.2.2 ResearchQuestions and Experimental Setup. Based on the above discussions, we study the
following two questions:

• How do the performance rankings vary with the four splitting methods?
• Do the four splitting methods make invalid recommendations violating global time
constraints?

For the first question, we rank the list of compared algorithms given a splitting method. And,
we measure the rank correlations between two splitting methods. The process is repeated for all
the datasets except Last.FM dataset that does not contain timestamps. The rest procedures (e.g.,
data preprocessing) follows the same way as reported in Section 4.1.2. For simplicity, we compute
the rank correlations with the metrics of Recall@10.

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

A Revisiting Study of Appropriate Offline Evaluation 32:25

Fig. 6. Visualization of correlations among four splitting methods. Each cell indicates the computed SRC

score (in purple) or OR@5 (in blue) score between two splitting methods (a darker color indicates a larger

value).

For the second question, we are inspired by a recent study [58], where the authors carefully
study the severity of data leakage when splitting by relative time index of each user. Here, we
mainly focus on the average invalid recommendations of each user that violate the constraints of
global timing, which is formally computed as follows:

#invalid =
1

|U |
∑
u ∈U

∑
i ∈R̂u

I
(
T
f
i ≥ T l

u

)
, (14)

where R̂u denotes a recommendation list for user u by a method and we truncate it to 10 in this

experiment,T
f
i is the first time that item i appears in training set,T l

u is the time of the last interac-
tion from user u in training set, and I (·) is an indicator function that returns 1 when the condition
is true and 0 otherwise.

5.2.3 Observations and Discussion. In this part, we analyze and compare the effect of different
ordering and splitting strategies in performance ranking.
Figure 6 presents the average SRC and OR@5 values among four splitting methods on seven

datasets. As we can see, different splitting methods are likely to lead to the change of the perfor-
mance ranking. It becomes more significant when we use different data ordering options to or-
ganize the interaction. In practice, the researchers should carefully select the ordering way based
on their task focus. When the task is time sensitive, it is better to use temporal ordering instead
of random ordering. As a comparison, there seems to be less difference between ratio-based split-
ting and leave-one-out splitting when the data are randomly ordered. A similar finding has also
been reported in Reference [138], where data ordering has more impact on the final performance
ranking than data splitting. Furthermore, we find that the difference of splitting strategies (ratio-
based splitting and leave-one-out splitting) is more significant under the temporal ordering. When
using temporal ordering, we suggest using the ratio-based splitting instead of the leave-one-out
splitting. As a comparison, when using random ordering, we can adopt the leave-one-out splitting
(the ranking correlation is close to 1) when data are limited. Another observation is that OR@5 is
higher than SRC (>0.8), which indicates at most one result is different among the top five rankings
(i.e., top results are relatively stable under different splitting settings).

Furthermore, Table 6 shows the number of invalid recommendations under different splitting
settings. We can observe that temporal ordering produces more invalid recommendations than

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

32:26 W. X. Zhao et al.

Table 6. The Number of Invalid Recommendations of Each User under the

Four Splitting Methods (Averaged over Different Algorithms)

Dataset
#invalid

RO_RS RO_LS TO_RS TO_LS

ML-1M 0.054 ± 0.004 0.049 ± 0.004 0.059 ± 0.004 0.054 ± 0.004
Yelp 0.067 ± 0.005 0.053 ± 0.005 0.078 ± 0.006 0.062 ± 0.005
Netflix 0.036 ± 0.000 0.034 ± 0.000 0.074 ± 0.000 0.056 ± 0.000
AMZ_Movie 0.169 ± 0.014 0.247 ± 0.023 0.195 ± 0.015 0.277 ± 0.023
AMZ_Video 0.283 ± 0.022 0.491 ± 0.038 0.414 ± 0.039 0.433 ± 0.040
AMZ_Toys 0.167 ± 0.014 0.353 ± 0.026 0.233 ± 0.020 0.403 ± 0.024
AMZ_Elec 0.079 ± 0.006 0.228 ± 0.019 0.269 ± 0.018 0.361 ± 0.021

random ordering. A major reason is that temporal ordering organizes the items according to the
relative interaction time of users. While, the users are active at different time spans in the global
timeline, and it is possible that an interaction from the training set has a later timestamp than some
interaction at the test set. Since the recommendation algorithms are learned on training set, they
tend to be injected into temporal information when learning user preference, thus recommending
future items to users [58].

The above findings show that ordering and splitting has important impact on the performance
comparison, which should be carefully considered when one prepares the experimental setup.

6 MODEL OPTIMIZATION

Besides evaluation metrics and datasets, another important aspect to consider is model optimiza-
tion. Since more and more neural recommendation algorithms are used in experimental compari-
son, it becomes increasingly important to tune and optimize them in a proper way.

6.1 Objective Function

We first study the impact of objective function on the performance of algorithms, which is one of
the most important parts for various recommendation algorithms.

6.1.1 Mainstream Objective Functions. Different from rating prediction, for implicit feedback,
we usually only have the signals for “positive data” (i.e., the items that a user interacts with), while
negative data are usually obtained via negative sampling. Following this way, two widely adopted
objective functions are the BPR loss [90] and BCE loss [47]. The BPR loss aims to optimize the
comparison between a positive item and a negative item, and the BCE loss aims to optimize the
probabilities of both positive and sampled negative items. Next, we present the formulations for
these two functions:

Lbpr =
∑

(u,i), (u, j)∈S̃
− logσ (r̂ui − r̂uj), (15)

Lbce =
∑

(u,i)∈S̃
− rui · log (r̂ui) − (1 − rui) · log (1 − r̂ui), (16)

where S̃ is a set of training instances consisting of positive interactions {(u, i) |rui = 1} and sampled
negative interactions {(u, j) |ruj = 0}, and r̂ui is the predicted label for the (u, i) instance. Thereinto,
BPR loss is more commonly used than BCE loss, which accounts for 40% and 30% in our collected
papers, respectively. Apart from the mainstream sampling-based objective function, several recent
studies proposed to apply non-sampling strategies to fully leverage the unobserved interaction

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

A Revisiting Study of Appropriate Offline Evaluation 32:27

Table 7. The Optimization and Training Efficiency of the

Studied Recommendation Algorithms

Algorithm Approach Optimization Training Efficiency

Pop Counting No �����
ItemKNN Similarity No �����
SVD++ MF-based BCE ����
BPRMF MF-based BPR �����
NCF MF+Neural BCE ��
FISM Similarity+MF BCE ��
NAIS Similarity+Neural BCE �
NGCF GNN-based BPR ���

LightGCN GNN-based BPR ���
CDAE Non-sampling Reconstruction ����

MultiVAE Non-sampling Reconstruction ����
ENMF Non-sampling Whole data ����

We adopt a five-star scheme to denote the levels of training efficiency, and set five

corresponding bins according to the training time {<60 s, 60 s–180 s, 180 s–360 s,

360 s–600 s, >600 s} based on ML-1M dataset with our server (more stars indicates

more efficient).

data [15, 72, 118]. A key assumption is that it fits the labels of the interactions with the entire item
set (all non-interacted items are considered to be negative), which is formally defined as

Lae =
∑
u ∈U

∑
i ∈I

cui
2
(rui − r̂ui)2, (17)

where cui is an optional weight for the interaction of user u and item i , rui is a binary value that
represents whether user u interacts with item i or not, and r̂ui is the predicted value of rui by a
recommendation algorithm. It is computed based on all the items for each user instead of sampled
items. To have an overall comparison of these algorithms, we present the optimization approach
and training efficiency of the studied algorithms in Table 7. Since these algorithms are built on
different architectures (involving very different parameters), it is difficult to formally compare their
time complexities in a unified way. Here we present a rough estimation of the training efficiency
according to the training time based on the ML-1M dataset. Since Pop and ItemKNN are mainly
based on counting statistics or sorting, we do not include them in the following discussions.

6.1.2 ResearchQuestion and Experimental Setup. For model optimization, we study the follow-
ing two questions:

• Which kind of objective functions generally achieves better performance, sampling or non-
sampling methods?
• Is there a significant difference between BPR and BCE losses in performance?

Recall that we have presented 12 recommendation algorithms in Section 3.3.2. Except popularity
and ItemKNN, the remaining 10 algorithms are implemented with one of the three optimization
functions. To conduct the experiments, we categorize 10 algorithms into three categories accord-
ing to their objective functions, including Non-sampling algorithm (CDAE, MultiVAE and ENMF),
BPR-based algorithm (BPRMF, NGCF, LightGCN), and BCE-based algorithm (NCF, SVD++, FISM,
and NAIS). For the first question, we aim to examine which category of recommendation algo-
rithms generally has a better performance. For the second question, since BPR and BCE losses are

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

32:28 W. X. Zhao et al.

Table 8. Algorithm Performance with Different Types of Loss Functions

Category Algorithm
ML-1M Netflix

Recall@10 NDCG@10 AUC Recall@10 NDCG@10 AUC

Non-

Sampling

a 0.0637 0.0711 0.8488 0.0442 0.0284 0.9132

b 0.0688 0.0709 0.8653 0.0433 0.0283 0.9218

c 0.0681 0.0726 0.8224 0.0426 0.0273 0.9052

BCE

based

do 0.0632 0.0735 0.8589 0.0356 0.0238 0.9220

dm 0.0502 0.0643 0.8328 0.0307 0.0219 0.8710

eo 0.0735 0.0760 0.8585 0.0415 0.0265 0.9144

em 0.0606 0.0705 0.8549 0.0570 0.0374 0.8844

fo 0.0709 0.0752 0.8510 0.0454 0.0293 0.9071

fm 0.0379 0.0471 0.8116 0.0459 0.0272 0.8669

BPR

based

дo 0.0666 0.0750 0.8618 0.0379 0.0252 0.9258

дm 0.0653 0.0734 0.8593 0.0370 0.0245 0.9219

ho 0.0684 0.0755 0.8586 0.0373 0.0242 0.9169

hm 0.0686 0.0753 0.8586 0.0368 0.0240 0.9196

io 0.0689 0.0740 0.8571 0.0407 0.0264 0.9205

im 0.0662 0.0769 0.8583 0.0384 0.0252 0.9226

The subscript o represents original algorithm andm represents the corresponding modified algorithm

(if the algorithm originally used the BPR loss, we would replace it with the BCE loss, and vice versa).

similar, we aim to examine whether changing BCE or BPR loss will lead to a substantial perfor-
mance change for the latter two categories.
To set up the experiments, we select the ML-1M and Netflix datasets for evaluation, which are

the smallest and largest datasets, respectively. We take three metrics (Recall@10, NDCG@10, and
AUC) as evaluation metrics, since they have been shown to be correlated with at least one of the
rest metrics. The rest procedures (e.g., data preprocessing) follow the same way as reported in Sec-
tion 4.1.2. The results are illustrated in Table 8. And the best results under each metric are bolded.

6.1.3 Observations and Discussion. The results of the nine algorithms on two datasets are listed
in Table 8. Since we are not interested in specific ranking positions of recommendation algorithms,
we shuffle the algorithms within each category and mask their names with the alphabets from
a to i . For sampling-based algorithms, we also include a variant that is replaced with the other
sampling-based optimization function. The following observations can be found as follows.
(1) As we can observe in Table 8, the three non-sampling algorithms generally perform better

on Netflix dataset, while they are worse than sampling-based algorithms on the small ML-1M
dataset. Except the AUC score, almost all the other cases on ML-1M dataset are won by one of
the sampling-based algorithms. In contrast, on the large Netflix dataset, non-sampling methods
outperform the sampling-based algorithms except for algorithm f . These results indicate that the
superiority seems to be related to the number of items in a dataset: The larger the number of
items is, the better performance non-sampling algorithms achieve. Similar findings are also found
in knowledge base completion tasks [43, 111], where we can either sample negative entities or
consider all the entities that are not in training triples as negative entities. A possible reason is
that a user is typically interested in a small number of items, and most items of a large item pool
are probable to be negative items for a user. A non-sampling algorithm has intrinsic advantage in
capturing the semantics of “dislike.”
(2) Comparing the two categories of sampling-based algorithms, there seems to be no significant

difference between their performance, except that algorithm f gives the best performance on the
Netflix dataset. However, when comparing the original implementations (denoted by the subscript

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

A Revisiting Study of Appropriate Offline Evaluation 32:29

o) and the modified implementations (denoted by the subscriptm) by replacing the optimization
function, we can see the performance decreases to some extent. In particular, for BCE-based algo-
rithms, their modifications with the BPR functions have led to significant performance drop. These
findings show that when using sampling-based algorithms as baselines, we should follow the orig-
inal optimization functions as possible. Although the two sampling-based optimization functions
are similar in formulation, they have different implications in essence. We will study the difference
between the two loss functions in future work.

6.2 Hyper-parameter Search

Besides simple statistics-based algorithms, most of the recommendation algorithms have several
parameters to tune. Here we discriminate parameters that need to be learned through optimiza-
tion algorithms from those that are needed to be set before training the algorithms. We refer the
latter as hyper-parameters. In particular, neural-based algorithms typically need to set more hyper-
parameters, including the number of layers, embedding size, and dropout rate. Recently, a number
of studies have complained that the comparison baselines are not equipped with well-tuned pa-
rameters [23] in published research papers, leading to unfair comparison. In this part, we conduct
the study on optimal parameter search for recommendation algorithms.

6.2.1 Search Methodology. In principle, optimal hyper-parameters should be obtained through
the tuning on validation sets. However, we do find that a number of research papers do not use
validation sets. In our paper collection, for those with validation sets, 36% papers directly provide
the hyper-parameters in their experiments without further search (e.g., reuse the originally re-
ported values), and 30% of papers offer no information about hyper-parameters in their experiment
sections.
By reviewing existing studies, grid search is the most widely used parameter search approach,

in which we first set the search range and then perform an exhaustive procedure to evaluate
all the possible parameter settings. Grid search is easy to be implemented, however, it is very
time-consuming when the number of hyper-parameters is large. To alleviate this problem, sev-
eral parameter optimization strategies have been proposed, such as random search [8], Bayesian
HyperOpt [102], and asynchronous model-based search [4], which try to seek a balance between
efficiency and effectiveness. However, these methods mainly focus on general parameter search,
which might be too complicated to be used in recommender systems.

Inspired by sequential parameter optimization [6], we consider a sequential search proce-
dure [130] (called sequential search) that gradually optimizes the parameters one by one. In this
method, we tune one parameter at each time while fixing the rest parameters, in a sequential man-
ner. Sequential search dramatically reduces the time complexity to enumerate possible parameter
combinations. Besides, we further design a simple variant for sequential search by incorporating
the early-stop mechanism [88], called sequential search with early stop. In this way, we can stop
searching for some parameters when the performance gap between two examined values is small,
which is useful to reduce tuning time.

For parameter tuning, given a hyper-parameter, we first set the search set by selecting several
representative values. A larger search set indicates a more number of values to be searched. We
arrange the parameters requiring more search values at a later order, and it is more robust when
sequentially searching a number of parameters.4 Thus, we sequentially search the parameters ac-
cording to the ascending order of their searching range.
Next, we construct a detailed study of parameter search on recommender systems.

4Intuitively, the parameters with fewer search values are relatively easier to set than those with more search values.

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

32:30 W. X. Zhao et al.

6.2.2 Research Question and Experimental Setup. In recent years, there are increasing con-
cerns on the reproducible results of recommendation algorithms [2, 23–25], where proper hyper-
parameter setting is one of the most important factors for the algorithm reproducibility. We con-
sider studying the following two questions:

• Are there any shortcut rules as empirical experiences to set these hyper-parameters?
• Is there an approach to balancing the effectiveness and efficiency in hyper-parameter search?

For different recommendation algorithms, the involved parameters are quite different. Here we
mainly consider studying four major hyper-parameters in neural recommendation algorithms, in-
cluding the learning rate, embedding size, hidden layer size, and regularization weight. These four
kinds of hyper-parameters are commonly used in various recommendation algorithms. For the
other parameters to be tuned, we still adopt the grid search approach to optimize them but omit
their tuning results in this article. To perform the experiments, the dataset is preprocessed by five-
core filtering and split with the TO_RS option (Section 5.2), where 80% of data is used for training
and the remaining 20% of data is equally divided for validating and testing. Due to a space limit,
we only report the optimal parameters on ML-1M datasets, and the results of more datasets can
be found in our GitHub page for this work.

6.2.3 Observations and Discussion. We first report the search set and optimal hyper-parameters
found by the grid search in Table 9. As a comparison, we present the hyper-parameters that are
found by sequential search in Table 10. Here the optimal performance obtained from grid search
is considered as a performance reference for the two sequential search methods. In Table 9, the
following observations can be found as follows.
(1) The optimal value for embedding size seems to be varying for different search methods.

Eight of 10 comparison algorithms achieve their best when embedding size is equal or greater
than 128. It indicates that these recommendation algorithms might need a large embedding
size to achieve the optimal performance in experimental comparison. However, in existing rec-
ommender systems, they typically set the embedding size to 64 or 128 in baseline algorithms,
such as the most widely adopted baseline BPR. These observations show that we need to con-
sider a large search range for the embedding size in parameter tuning. However, the setting of
embedding size depends on the actual hardware support, since some algorithms might take a
significant amount of space to run with a large embedding size. In this case, we recommend
that the authors should indicate that the parameters might not be optimal for performance
comparison.
(2) Compared with embedding size, learning rate seems to be more stable for different algo-

rithms, where the optimal values are around the scale between 1e-4 and 1e-5 for most of sampling-
based algorithms. A majority of algorithms (except FISM and non-sampling algorithms) obtain
their best performance when learning rate falls in [1e − 5, 1e − 4]. While the learning rate of those
non-sampling algorithms is usually larger and falls in [1e − 3, 1e − 2]. A possible reason is that
sampling and non-sampling algorithms use different optimization ways. For sampling-based al-
gorithms, they usually sample a batch of interactions for updating the parameters iteratively; for
non-sampling algorithms, they consider the entire item set in one update, so the learning rate can
be set to a larger value for accelerating the optimization. These findings can be used as empirical
guidelines for parameter tuning.
(3) Next, we continue to analyze the results of sequential search in Table 11. Here we take the

results of grid search as a reference and report the relative change in both accuracy and efficiency.
Although the optimal parameters obtained from sequential search are somehow different from

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

A Revisiting Study of Appropriate Offline Evaluation 32:31

Table 9. Optimal Hyper-parameters Found by Grid Search on ML-1M Dataset and the

Corresponding Search Set

Algorithm Optimal hyper-parameters Search set

BPR
embedding_size=2048

learning_rate=1e-4

embedding_size in [16,32,64,128,256,512,

1024,2048,4096]

learning_rate in [5e-5,1e-4,5e-4,1e-3,

5e-3,1e-2,5e-2]

SVD++

embedding_size=128

learning_rate=5e-4

reg_weight=5e-4

embedding_size in [64,128,256,512]

learning_rate in [1e-4,5e-4,1e-3,5e-3,1e-2]

reg_weight in [0,5e-5,5e-4,5e-3,5e-2]

NCF

dropout_prob=0.3

embedding_size=64

learning_rate=5e-4

mlp_hidden_size=[256,256,256]

dropout_prob in [0.1,0.2,0.3,0.5]

embedding_size in [32,64,128,256,512]

learning_rate in [5e-5,1e-4,5e-4,1e-3]

mlp_hidden_size in [[256,128,256],[128,128,128],

[256,256,256],[64,64,64]]

NAIS

embedding_size=32

learning_rate=5e-5

reg_weights=0

embedding_size in [16,32,64,128]

learning_rate in [1e-5,5e-5,1e-4,5e-4,1e-3]

reg_weights in [1e-7,1e-3,0,10]

FISM

embedding_size=128

learning_rate=1e-3

reg_weights=1e-3

embedding_size in [64,128,256]

learning_rate in [5e-5,1e-4,5e-4,1e-3]

reg_weights in [1e-7,0,1e-1,1e-3,1e-5]

NGCF

embedding_size=2048

hidden_size=256

learning_rate=5e-4

reg_weight=1e-6

embedding_size in [512,1024,2048]

hidden_size in [256,512,1024]

learning_rate in [1e-4,5e-4,1e-3,5e-3]

reg_weight in [0,1e-6,1e-4,1e-2]

LightGCN

embedding_size=1024

learning_rate=5e-4

reg_weight=1e-2

embedding_size in [256,512,1024,2048]

learning_rate in [1e-4,5e-4,1e-3,5e-3,1e-2]

reg_weight in [1e-6,1e-5,1e-4,1e-2,0]

ENMF

dropout_prob=0.3

embedding_size=256

learning_rate=1e-3

negative_weight=0.5

dropout_prob in [0.5,0.3,0.1]

embedding_size in [64,256,512]

learning_rate in [5e-5,1e-4,5e-4,1e-3,5e-3,1e-2]

negative_weight in [5e-3,5e-2,0.5]

CDAE
embedding_size=4096

learning_rate=5e-3

embedding_size in [16,32,64,128,256,512,

1024,2048,4096]

learning_rate in [5e-5,1e-4,5e-4,1e-3,5e-3,

1e-2,5e-2]

MultiVAE

latent_dimension=128

learning_rate=1e-2

mlp_hidden_size=600

latent_dimension in [128,512,1024,2048]

learning_rate in [5e-5,1e-4,5e-4,1e-3,5e-3,1e-2]

mlp_hidden_size in [100,300,600,1200,2400]

Here, hyper-parameters are denoted with the options in RecBole.

those obtained from grid search (shown in Table 10), they are able to retain comparable accuracy,
even a slight improvement in some cases (except the case of FISM using sequential search with
early stop). Furthermore, for efficiency consideration, approximate sequential search is able to
largely reduce the expected time costs. Besides, when comparing the two sequential search vari-
ants, we find that the incorporation of early stop leads to unstable change on accuracy (the case of
FISM in Table 11). Overall, these observations indicate that sequential search for parameter tuning
can be applied when it is time-consuming to compare many recommendation algorithms, which
can yield comparable accuracy with grid search.

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

32:32 W. X. Zhao et al.

Table 10. Optimal Hyper-parameters Found by Sequential Search

in the Search Set

Algorithms Sequential search
Sequential search

with early stopping

BPR
embedding_size=4096

learning_rate=5e-5

embedding_size=4096

learning_rate=5e-5

SVD++
embedding_size=64

learning_rate=1e-3

embedding_size=64

learning_rate=1e-3

NCF

dropout_prob=0.2

mlp=[256,128,256]

embedding_size=32

dropout_prob=0.2

mlp=[256,128,256]

embedding_size=32

NAIS

reg_weights=1e-7

embedding_size=16

learning_rate=5e-4

reg_weights=1e-7

embedding_size=16

learning_rate=5e-4

FISM
embedding_size=64

learning_rate=5e-4

reg_weights=[0.1,0.1]

learning_rate=5e-3

NGCF
hidden_size=1024

embedding_size=512

hidden_size=1024

embedding_size=512

LightGCN reg_weight=1e-6 reg_weight=1e-6

ENMF
dropout_prob=0.5

learning_rate=5e-4

dropout_prob=0.5

learning_rate=5e-4

CDAE None
embedding_size=64

learning_rate=5e-2

MultiVAE mlp_hidden_size=[300]
mlp_hidden_size=1200

learning_rate=1e-3

Hyper-parameters are denoted with the options in RecBole.

Table 11. Effectiveness and Efficiency Comparison between

Sequential Search and Grid Search

Algorithm
Sequential search

Sequential search

with early stopping

Accuracy Efficiency Accuracy Efficiency

BPR +0.25% +74.61% +0.2% 82.54%

SVD++ +0.26% +86% +0.26% +90%

NCF −0.83% +95% −0.83% 97.25%

NAIS −1.87% +80% −1.87% +85%

FISM +1.22% +43.66% –23.24% +62.5%

NGCF +5.87% +88.89% +5.87% +91.67%

LightGCN −0.13% +52% −0.13% +72%

ENMF −2.12% +86.12% −2.12% +88.89%

CDAE 0% +68.26% +2.37% +76.2%

MultiVAE −2.97% +83.34% −2.12% +86.84%

Here, we take the optimal accuracy on Recall@10 and training time

with grid search as the reference, and report the relative change ratio.

7 CONCLUSION

In this work, we conducted a large-scale, systematic study on six important factors from three
aspects for evaluating recommender systems. We extensively collect the research papers on
top-N recommendation and analyze and summarize the most divergent settings in different

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

A Revisiting Study of Appropriate Offline Evaluation 32:33

factors. Our experiments are thoroughly designed and extensively performed. In particular, all the
experimental results in this article can be reproduced with an open sourced recommendation li-
brary Recbole [139]. To conclude this article and highlight our findings, we summarize them as
follows:

• Evaluation metrics. We find that evaluation metrics can form into several coherent groups:
the metrics from the same group have very strong correlations, and inter-group metrics
are not consistent in ranking measurement. In particular, beyond-accuracy metrics are very
different from accuracy metrics. It is suggested the researchers should select a number of
diverse metrics for evaluation, at least covering different groups of metrics. For sampled
metrics, it is likely to yield very different performance rankings. With more sampled neg-
atives, the correlation degree becomes larger. Specifically, there are more variations in the
overall ranking than the top ranked algorithms. We also test some recently proposed de-
biasing method for sampled metrics. However, we find that it may not effectively reduce
the bias from sampled metrics. In practice, the researchers should avoid the use of sam-
pled metrics. If it was used, then it is suggested to use a large number of negative items as
possible.
• Dataset construction. We find that the influencing factors for selecting datasets are very di-
verse. In experiments, the researchers are recommended to select more diverse datasets cov-
ering different characteristics in scale, sparsity or domain. Furthermore, data filtering tends
to produce different performance rankings. Even with the classic n-core filtering, the re-
searchers should carefully examine the statistics and distribution of the interaction data, to
obtain similar comparison results as the original datasets. Given the selected datasets, we
compare four combinations to construct the training, validation and test sets. We find that
performance ranking is more sensitive to the way of data ordering than the splitting strat-
egy. We also find that all the four data construction methods lead to data leakage in global
timelines, which should be taken special considerations for avoiding this issue.
• Model optimization. We analyze two kinds of optimization functions widely adopted in exist-
ing recommendation algorithms, namely sampling-based and non-sampling methods. Over-
all, the non-sapling method has intrinsic advantage when the item set is large. We further
study the BPR loss and BCE loss based on the sampling-based methods. It is suggested that
the implemented baselines should follow the original optimization functions. Otherwise,
the performance might be sub-optimal or not comparable to the originally reported result.
Furthermore, we extensively discuss the hyper-parameter search. We list several empirical
guidelines to reduce the search range for hyper-parameters, and also present a sequential
search procedure that can effectively reduce the search cost.

As future work, we will consider conducting more studies on beyond-accuracy metrics, which
have different effects on the performance rankings compared with accuracy metrics. Besides, con-
sidering that full-ranking evaluation is very time-consuming, we will consider designing better
sampledmetrics, so that the correlationwith the full-ranking performance can be largely improved.
Another interesting direction is to study how these findings generalize to online evaluation. Cur-
rently, there is not a thorough discussion about the connection and difference between online and
offline evaluation. We will investigate into this topic in the future.
Furthermore, to conduct fair, reproducible evaluation, we believe a fundamental solution in prac-

tice is to develop a standardized, open sourced evaluation platform (e.g., RecBole) with all the eval-
uation setup steps. We will consider continually improving the RecBole library for including more
commonly used evaluation options or settings.

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

32:34 W. X. Zhao et al.

ACKNOWLEDGMENTS

The authors gratefully appreciate the anonymous reviewers for their valuable and detailed com-
ments that greatly helped to improve the quality of this article.

REFERENCES

[1] Fabio Aiolli. 2013. Efficient top-n recommendation for very large scale binary rated datasets. In Proceedings of the

7th ACM Conference on Recommender Systems (RecSys’13). Association for Computing Machinery, New York, NY,

273–280. https://doi.org/10.1145/2507157.2507189

[2] Zafar Ali, Irfan Ullah, Amin Khan, Asim Ullah Jan, and Khan Muhammad. 2021. An overview and evaluation of

citation recommendation models. Scientometrics 126, 5 (2021), 4083–4119.

[3] Vito Walter Anelli, Alejandro Bellogín, Antonio Ferrara, Daniele Malitesta, Felice Antonio Merra, Claudio Pomo,

Francesco Maria Donini, and Tommaso Di Noia. 2021. Elliot: A comprehensive and rigorous framework for repro-

ducible recommender systems evaluation. In Proceedings of the 44th International ACM SIGIR Conference on Research

and Development in Information Retrieval (SIGIR’21), Fernando Diaz, Chirag Shah, Torsten Suel, Pablo Castells, Rosie

Jones, and Tetsuya Sakai (Eds.). ACM, 2405–2414. https://doi.org/10.1145/3404835.3463245

[4] Prasanna Balaprakash, Michael Salim, Thomas D. Uram, Venkat Vishwanath, and Stefan M. Wild. 2018. DeepHy-

per: Asynchronous hyperparameter search for deep neural networks. In Proceedings of the IEEE 25th International

Conference on High Performance Computing (HiPC’18). 42–51. https://doi.org/10.1109/HiPC.2018.00014

[5] Oren Barkan, Yonatan Fuchs, Avi Caciularu, andNoamKoenigstein. 2020. Explainable recommendations via attentive

multi-persona collaborative filtering. In Proceedings of the 14th ACM Conference on Recommender Systems (RecSys’20).

Association for Computing Machinery, New York, NY, 468–473. https://doi.org/10.1145/3383313.3412226

[6] T. Bartz-Beielstein, C. W. G. Lasarczyk, and M. Preuss. 2005. Sequential parameter optimization. In Proceedings of the

IEEE Congress on Evolutionary Computation, Vol. 1. 773–780. https://doi.org/10.1109/CEC.2005.1554761

[7] James Bennett, Stan Lanning, et al. 2007. The netflix prize. In Proceedings of the KDD Cup and Workshop, Vol. 2007.

Citeseer, 35.

[8] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13,

null (Feb. 2012), 281–305.

[9] Rocío Cañamares and Pablo Castells. 2020. On target item sampling in offline recommender system evaluation. In

Proceedingsof the 14th ACM Conference on Recommender Systems (RecSys’20). Association for Computing Machinery,

New York, NY, 259–268. https://doi.org/10.1145/3383313.3412259

[10] Pedro G. Campos, Fernando Díez, and Manuel Sánchez-Montañés. 2011. Towards a more realistic evaluation: Test-

ing the ability to predict future tastes of matrix factorization-based recommenders. In Proceedings of the 5th ACM

Conference on Recommender Systems (RecSys’11). Association for Computing Machinery, New York, NY, 309–312.

https://doi.org/10.1145/2043932.2043990

[11] Rocío Cañamares, Pablo Castells, and Alistair Moffat. 2020. Offline evaluation options for recommender systems. Inf.

Retriev. J. (2020), 1–24.

[12] Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2011. 2nd workshop on information heterogeneity and fusion in

recommender systems (hetrec 2011). In Proceedings of the 5th ACM Conference on Recommender Systems (RecSys’11).

ACM, New York, NY.

[13] Sonny Han Seng Chee, Jiawei Han, and Ke Wang. 2001. Rectree: An efficient collaborative filtering method. In Pro-

ceedings of the International Conference on Data Warehousing and Knowledge Discovery. Springer, 141–151.

[14] Chong Chen, Min Zhang, Yiqun Liu, and Shaoping Ma. 2019. Social attentional memory network: Modeling aspect-

and friend-level differences in recommendation. In Proceedings of the 12th ACM International Conference on Web

Search and Data Mining (WSDM’19). Association for Computing Machinery, New York, NY, 177–185. https://doi.org/

10.1145/3289600.3290982

[15] Chong Chen, Min Zhang, Yongfeng Zhang, Yiqun Liu, and Shaoping Ma. 2020. Efficient neural matrix factorization

without sampling for recommendation. ACM Trans. Inf. Syst. 38, 2, Article 14 (Jan. 2020), 28 pages. https://doi.org/10.

1145/3373807

[16] Chong Chen, Min Zhang, Yongfeng Zhang, Weizhi Ma, Yiqun Liu, and Shaoping Ma. 2020. Efficient heterogeneous

collaborative filtering without negative sampling for recommendation. In Proceedings of the AAAI Conference on

Artificial Intelligence, Vol. 34. 19–26.

[17] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan He. 2020. Bias and debias in recom-

mender system: A survey and future directions. arXiv:2010.03240. Retrieved from https://arxiv.org/abs/2010.03240.

[18] Weijian Chen, Yulong Gu, Zhaochun Ren, Xiangnan He, Hongtao Xie, Tong Guo, Dawei Yin, and Yongdong Zhang.

2019. Semi-supervised user profilingwith heterogeneous graph attention networks. In Proceedings of the International

Joint Conference on Artificial Intelligence (IJCAI’19), Vol. 19. 2116–2122.

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

https://doi.org/10.1145/2507157.2507189
https://doi.org/10.1145/3404835.3463245
https://doi.org/10.1109/HiPC.2018.00014
https://doi.org/10.1145/3383313.3412226
https://doi.org/10.1109/CEC.2005.1554761
https://doi.org/10.1145/3383313.3412259
https://doi.org/10.1145/2043932.2043990
https://doi.org/10.1145/3289600.3290982
https://doi.org/10.1145/3373807
https://arxiv.org/abs/2010.03240

A Revisiting Study of Appropriate Offline Evaluation 32:35

[19] Yihong Chen, Bei Chen, Xiangnan He, Chen Gao, Yong Li, Jian-Guang Lou, and Yue Wang. 2019. λ Opt: Learn to

regularize recommender models in finer levels. In Proceedings of the 25th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining (KDD’19). Association for Computing Machinery, New York, NY, 978–986.

https://doi.org/10.1145/3292500.3330880

[20] Yifan Chen and Maarten de Rijke. 2018. A collective variational autoencoder for top-n recommendation with side

information. In Proceedings of the 3rd Workshop on Deep Learning for Recommender Systems. 3–9.

[21] Jin Yao Chin, Yile Chen, and Gao Cong. 2022. The datasets dilemma: Howmuch do we really know about recommen-

dation datasets? In Proceedings of the 15th ACM International Conference on Web Search and Data Mining. 141–149.

[22] Evangelia Christakopoulou and George Karypis. 2018. Local latent space models for top-n recommendation. In Pro-

ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD’18). Asso-

ciation for Computing Machinery, New York, NY, 1235–1243. https://doi.org/10.1145/3219819.3220112

[23] Maurizio Ferrari Dacrema, Simone Boglio, Paolo Cremonesi, and Dietmar Jannach. 2021. A troubling analysis of

reproducibility and progress in recommender systems research. ACM Trans. Inf. Syst. 39, 2, Article 20 (January 2021),

49 pages. https://doi.org/10.1145/3434185

[24] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are we really making much progress?

A worrying analysis of recent neural recommendation approaches. In Proceedings of the 13th ACM Conference on

Recommender Systems (RecSys’19). Association for Computing Machinery, New York, NY, 101–109. https://doi.org/

10.1145/3298689.3347058

[25] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2020. Methodological issues in recommender

systems research. In Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI’20). 4706–

4710.

[26] Yashar Deldjoo, Tommaso Di Noia, Eugenio Di Sciascio, and Felice Antonio Merra. 2020. How dataset characteristics

affect the robustness of collaborative recommendation models. In Proceedings of the 43rd International ACM SIGIR

Conference on Research and Development in Information Retrieval. 951–960.

[27] Zhi-Hong Deng, Ling Huang, Chang-Dong Wang, Jian-Huang Lai, and Philip S. Yu. 2019. DeepCF: A unified frame-

work of representation learning and matching function learning in recommender system. In Proceedings of the AAAI

Conference on Artificial Intelligence. 61–68. https://doi.org/10.1609/aaai.v33i01.330161

[28] Mukund Deshpande and George Karypis. 2004. Item-based top-n recommendation algorithms. ACM Trans. Inf. Syst.

22, 1 (2004), 143–177.

[29] Robin Devooght, Nicolas Kourtellis, and Amin Mantrach. 2015. Dynamic matrix factorization with priors on un-

known values. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. 189–198.

[30] Jingtao Ding, Yuhan Quan, Quanming Yao, Yong Li, and Depeng Jin. 2020. Simplify and robustify negative sampling

for implicit collaborative filtering. arXiv:2009.03376. Retrieved from https://arxiv.org/abs/2009.03376.

[31] Jingtao Ding, Guanghui Yu, Yong Li, Xiangnan He, and Depeng Jin. 2020. Improving implicit recommender systems

with auxiliary data. ACM Trans. Inf. Syst. 38, 1, Article 11 (Feb. 2020), 27 pages. https://doi.org/10.1145/3372338

[32] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative memory network for recommendation systems. In Proceed-

ings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR’18).

Association for Computing Machinery, New York, NY, 515–524. https://doi.org/10.1145/3209978.3209991

[33] Ehtsham Elahi, Wei Wang, Dave Ray, Aish Fenton, and Tony Jebara. 2019. Variational low rank multinomials for

collaborative filtering with side-information. In Proceedings of the 13th ACM Conference on Recommender Systems

(RecSys’19). Association for Computing Machinery, New York, NY, 340–347. https://doi.org/10.1145/3298689.3347036

[34] Ehtsham Elahi, Wei Wang, Dave Ray, Aish Fenton, and Tony Jebara. 2019. Variational low rank multinomials for

collaborative filtering with side-information. In Proceedings of the 13th ACM Conference on Recommender Systems.

340–347.

[35] Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. 2015. A multi-view deep learning approach for cross domain

user modeling in recommendation systems. In Proceedings of the 24th International Conference on World Wide Web

(WWW’15). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE,

278–288. https://doi.org/10.1145/2736277.2741667

[36] Soude Fazeli, Babak Loni, Alejandro Bellogin, Hendrik Drachsler, and Peter Sloep. 2014. Implicit vs. explicit trust in

social matrix factorization. In Proceedings of the 8th ACM Conference on Recommender systems. 317–320.

[37] Evgeny Frolov and Ivan Oseledets. 2019. HybridSVD: When collaborative information is not enough. In Proceedings

of the 13th ACM Conference on Recommender Systems (RecSys’19). Association for Computing Machinery, New York,

NY, 331–339. https://doi.org/10.1145/3298689.3347055

[38] Zeno Gantner, Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2011. MyMediaLite: A free rec-

ommender system library. In Proceedings of the 5th ACM Conference on Recommender Systems. 305–308.

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

https://doi.org/10.1145/3292500.3330880
https://doi.org/10.1145/3219819.3220112
https://doi.org/10.1145/3434185
https://doi.org/10.1145/3298689.3347058
https://doi.org/10.1609/aaai.v33i01.330161
https://arxiv.org/abs/2009.03376
https://doi.org/10.1145/3372338
https://doi.org/10.1145/3209978.3209991
https://doi.org/10.1145/3298689.3347036
https://doi.org/10.1145/2736277.2741667
https://doi.org/10.1145/3298689.3347055

32:36 W. X. Zhao et al.

[39] Alexandre Gilotte, Clément Calauzènes, Thomas Nedelec, Alexandre Abraham, and Simon Dollé. 2018. Offline a/b

testing for recommender systems. In Proceedings of the 11th ACM International Conference on Web Search and Data

Mining. 198–206.

[40] Guibing Guo, Jie Zhang, Zhu Sun, and Neil Yorke-Smith. 2015. LibRec: A java library for recommender systems. In

UMAP Workshops, Vol. 4. Citeseer.

[41] Udit Gupta, Samuel Hsia, Vikram Saraph, XiaodongWang, Brandon Reagen, Gu-YeonWei, Hsien-Hsin S. Lee, David

Brooks, and Carole-JeanWu. 2020. Deeprecsys: A system for optimizing end-to-end at-scale neural recommendation

inference. In Proceedings of the ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA’20).

IEEE, 982–995.

[42] F. Maxwell Harper and Joseph A. Konstan. 2015. The movielens datasets: History and context. ACM Trans. Interact.

Intell. Syst. 5, 4 (2015), 1–19.

[43] Gaole He, Junyi Li, Wayne Xin Zhao, Peiju Liu, and Ji-Rong Wen. 2020. Mining implicit entity preference from user-

item interaction data for knowledge graph completion via adversarial learning. In Proceedings of the Web Conference

2020. 740–751.

[44] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. 2020. Lightgcn: Simplifying

and powering graph convolution network for recommendation. In Proceedings of the 43rd International ACM SIGIR

Conference on Research and Development in Information Retrieval. 639–648.

[45] Xiangnan He, Zhankui He, Xiaoyu Du, and Tat-Seng Chua. 2018. Adversarial personalized ranking for recommenda-

tion. In Proceedings of the 41st International ACM SIGIR Conference on Research &Development in Information Retrieval

(SIGIR’18). Association for Computing Machinery, New York, NY, 355–364. https://doi.org/10.1145/3209978.3209981

[46] X. He, Z. He, J. Song, Z. Liu, Y. Jiang, and T. Chua. 2018. NAIS: Neural attentive item similarity model for recommen-

dation. IEEE Trans. Knowl. Data Eng. 30, 12 (2018), 2354–2366. https://doi.org/10.1109/TKDE.2018.2831682

[47] XiangnanHe, Lizi Liao, HanwangZhang, LiqiangNie, XiaHu, and Tat-SengChua. 2017. Neural collaborative filtering.

In Proceedings of the World Wide Web Conference (WWW’17). International World Wide Web Conferences Steering

Committee, Republic and Canton of Geneva, CHE, 173–182. https://doi.org/10.1145/3038912.3052569

[48] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast matrix factorization for online recom-

mendation with implicit feedback. In Proceedings of the 39th International ACM SIGIR Conference on Research and

Development in Information Retrieval. 549–558.

[49] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast matrix factorization for online rec-

ommendation with implicit feedback (SIGIR’16). Association for Computing Machinery, New York, NY, 549–558.

https://doi.org/10.1145/2911451.2911489

[50] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent neural networks with top-k gains for session-based rec-

ommendations. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management

(CIKM’18). Association for Computing Machinery, New York, NY, 843–852. https://doi.org/10.1145/3269206.3271761

[51] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. 2015. Session-based recommendations

with recurrent neural networks. arXiv:1511.06939. Retrieved from https://arxiv.org/abs/1511.06939.

[52] Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S. Yu. 2018. Leveraging meta-path based context for top- n

recommendation with a neural co-attention model. In Proceedings of the 24th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining (KDD’18). Association for Computing Machinery, New York, NY, 1531–1540.

https://doi.org/10.1145/3219819.3219965

[53] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for implicit feedback datasets. In Proceed-

ings of the 8th IEEE International Conference on Data Mining. IEEE, 263–272.

[54] Olivier Jeunen. 2019. Revisiting offline evaluation for implicit-feedback recommender systems. In Proceedings of the

13th ACM Conference on Recommender Systems (RecSys’19). Association for Computing Machinery, New York, NY,

596–600. https://doi.org/10.1145/3298689.3347069

[55] Olivier Jeunen, Koen Verstrepen, and Bart Goethals. 2018. Fair offline evaluationmethodologies for implicit-feedback

recommender systemswithMNAR data. In Proceedings of the REVEAL 18Workshop on Offine Evaluation, October 2018,

Vancouver, Canada.

[56] Shuyi Ji, Yifan Feng, Rongrong Ji, Xibin Zhao,Wanwan Tang, and Yue Gao. 2020. Dual channel hypergraph collabora-

tive filtering. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining

(KDD’20). Association for ComputingMachinery, New York, NY, 2020–2029. https://doi.org/10.1145/3394486.3403253

[57] Yitong Ji, Aixin Sun, Jie Zhang, and Chenliang Li. 2020. A re-visit of the popularity baseline in recommender systems.

In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.

1749–1752.

[58] Yitong Ji, Aixin Sun, Jie Zhang, and Chenliang Li. 2021. A critical study on data leakage in recommender system

offline evaluation. arXiv:2010.11060 [cs.IR]. Retrieved from https://arxiv.org/abs/2010.11060.

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

https://doi.org/10.1145/3209978.3209981
https://doi.org/10.1109/TKDE.2018.2831682
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/2911451.2911489
https://doi.org/10.1145/3269206.3271761
https://arxiv.org/abs/1511.06939
https://doi.org/10.1145/3219819.3219965
https://doi.org/10.1145/3298689.3347069
https://doi.org/10.1145/3394486.3403253
http://arxiv.org/abs/2010.11060
https://arxiv.org/abs/2010.11060

A Revisiting Study of Appropriate Offline Evaluation 32:37

[59] Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. 2016. Field-aware factorization machines for CTR

prediction. In Proceedings of the 10th ACM Conference on Recommender Systems. 43–50.

[60] Santosh Kabbur, Xia Ning, and George Karypis. 2013. FISM: Factored item similarity models for top-n recommender

systems. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(KDD’13). Association for Computing Machinery, New York, NY, 659–667. https://doi.org/10.1145/2487575.2487589

[61] Ron Kohavi and Roger Longbotham. 2017. Online Controlled Experiments and A/B Testing. 922–929. https://doi.org/

10.1007/978-1-4899-7687-1_891

[62] Yehuda Koren. 2008. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In Proceed-

ings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’08). Associa-

tion for Computing Machinery, New York, NY, 426–434. https://doi.org/10.1145/1401890.1401944

[63] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization techniques for recommender systems.

Computer 42, 8 (2009), 30–37.

[64] Walid Krichene and Steffen Rendle. 2020. On sampled metrics for item recommendation. In Proceedings of the ACM

SIGKDD Conference on Knowledge Discovery and Data Mining.

[65] Maciej Kula. 2015. Metadata embeddings for user and item cold-start recommendations. arXiv:1507.08439. Retrieved

from https://arxiv.org/abs/1507.08439.

[66] Volodymyr Kysenko, Karl Rupp, Oleksandr Marchenko, Siegfried Selberherr, and Anatoly Anisimov. 2012. GPU-

accelerated non-negative matrix factorization for text mining. In Proceedings of the International Conference on Ap-

plication of Natural Language to Information Systems. Springer, 158–163.

[67] Dung D. Le and Hady W. Lauw. 2017. Indexable bayesian personalized ranking for efficient top-k recommendation.

In Proceedings of the ACM on Conference on Information and Knowledge Management (CIKM’17). Association for

Computing Machinery, New York, NY, 1389–1398. https://doi.org/10.1145/3132847.3132913

[68] DongSheng Li, Chao Chen, Qin Lv, Li Shang, Stephen Chu, and Hongyuan Zha. 2017. ERMMA: Expected risk mini-

mization for matrix approximation-based recommender systems. In Proceedings of the Thirty-first AAAI Conference

on Artificial Intelligence.

[69] Dong Li, Ruoming Jin, Jing Gao, and Zhi Liu. 2020. On sampling top-k recommendation evaluation. In Proceedings

of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD’20). Association for

Computing Machinery, New York, NY, 2114–2124. https://doi.org/10.1145/3394486.3403262

[70] Xiaopeng Li and James She. 2017. Collaborative variational autoencoder for recommender systems. In Proceedings of

the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing

Machinery, New York, NY, 305–314. https://doi.org/10.1145/3097983.3098077

[71] Dawen Liang, Laurent Charlin, James McInerney, and David M. Blei. 2016. Modeling user exposure in recommenda-

tion. In Proceedings of the 25th International Conference on World Wide Web. 951–961.

[72] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018. Variational autoencoders for collabo-

rative filtering. In Proceedings of the World Wide Web Conference (WWW’18). International World Wide Web Confer-

ences Steering Committee, Republic and Canton of Geneva, CHE, 689–698. https://doi.org/10.1145/3178876.3186150

[73] Chen Ma, Peng Kang, Bin Wu, Qinglong Wang, and Xue Liu. 2019. Gated attentive-autoencoder for content-aware

recommendation. In Proceedings of the 12th ACM International Conference onWeb Search and DataMining (WSDM’19).

Association for Computing Machinery, New York, NY, 519–527. https://doi.org/10.1145/3289600.3290977

[74] Jingwei Ma, JiahuiWen, Mingyang Zhong, Liangchen Liu, Chaojie Li, Weitong Chen, Yin Yang, Hongkui Tu, and Xue

Li. 2019. DBRec: Dual-bridging recommendation via discovering latent groups. In Proceedings of the 28th ACM Inter-

national Conference on Information and Knowledge Management (CIKM’19). Association for Computing Machinery,

New York, NY, 1513–1522. https://doi.org/10.1145/3357384.3357892

[75] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. 2015. Image-based recommendations

on styles and substitutes. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development

in Information Retrieval. 43–52.

[76] Sean M. McNee, John Riedl, and Joseph A. Konstan. 2006. Being accurate is not enough: How accuracy metrics have

hurt recommender systems. In CHI’06 Extended Abstracts on Human Factors in Computing Systems. 1097–1101.

[77] Lei Mei, Pengjie Ren, Zhumin Chen, Liqiang Nie, Jun Ma, and Jian-Yun Nie. 2018. An attentive interaction network

for context-aware recommendations. In Proceedings of the 27th ACM International Conference on Information and

Knowledge Management (CIKM’18). Association for Computing Machinery, New York, NY, 157–166. https://doi.org/

10.1145/3269206.3271813

[78] Elisa Mena-Maldonado, Rocío Cañamares, Pablo Castells, Yongli Ren, and Mark Sanderson. 2020. Agreement and

disagreement between true and false-positive metrics in recommender systems evaluation. In Proceedings of the 43rd

International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’20). Association for

Computing Machinery, New York, NY, 841–850. https://doi.org/10.1145/3397271.3401096

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

https://doi.org/10.1145/2487575.2487589
https://doi.org/10.1007/978-1-4899-7687-1_891
https://doi.org/10.1145/1401890.1401944
https://arxiv.org/abs/1507.08439
https://doi.org/10.1145/3132847.3132913
https://doi.org/10.1145/3394486.3403262
https://doi.org/10.1145/3097983.3098077
https://doi.org/10.1145/3178876.3186150
https://doi.org/10.1145/3289600.3290977
https://doi.org/10.1145/3357384.3357892
https://doi.org/10.1145/3269206.3271813
https://doi.org/10.1145/3397271.3401096

32:38 W. X. Zhao et al.

[79] Zaiqiao Meng, Richard McCreadie, Craig Macdonald, and Iadh Ounis. 2020. Exploring data splitting strategies for

the evaluation of recommendation models. In Proceedings of the 14th ACM Conference on Recommender Systems

(RecSys’20). Association for Computing Machinery, New York, NY, 681–686. https://doi.org/10.1145/3383313.3418479

[80] Zaiqiao Meng, Richard McCreadie, Craig Macdonald, and Iadh Ounis. 2020. Exploring data splitting strategies for

the evaluation of recommendation models. In Proceedings of the 14th ACM Conference on Recommender Systems

(RecSys’20). Association for Computing Machinery, New York, NY, 681–686. https://doi.org/10.1145/3383313.3418479

[81] Athanasios N. Nikolakopoulos, Dimitris Berberidis, George Karypis, and Georgios B. Giannakis. 2019. Personalized

diffusions for top-n recommendation. In Proceedings of the 13th ACMConference on Recommender Systems (RecSys’19).

Association for Computing Machinery, New York, NY, 260–268. https://doi.org/10.1145/3298689.3346985

[82] Athanasios N. Nikolakopoulos and George Karypis. 2019. RecWalk: Nearly uncoupled random walks for top-n rec-

ommendation. In Proceedings of the 12th ACM International Conference on Web Search and Data Mining (WSDM’19).

Association for Computing Machinery, New York, NY, 150–158. https://doi.org/10.1145/3289600.3291016

[83] Rasaq Otunba, Raimi A. Rufai, and Jessica Lin. 2017. MPR: Multi-objective pairwise ranking. In Proceedings of the

Eleventh ACM Conference on Recommender Systems (RecSys’17). Association for Computing Machinery, New York,

NY, 170–178. https://doi.org/10.1145/3109859.3109903

[84] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and Q. Yang. 2008. One-class collaborative filtering. In

Proceedings of the 8th IEEE International Conference on Data Mining. 502–511. https://doi.org/10.1109/ICDM.2008.16

[85] Bibek Paudel, Thilo Haas, and Abraham Bernstein. 2017. Fewer flops at the top: Accuracy, diversity, and regular-

ization in two-class collaborative filtering. In Proceedings of the 11th ACM Conference on Recommender Systems

(RecSys’17). Association for Computing Machinery, New York, NY, 215–223. https://doi.org/10.1145/3109859.3109916

[86] Changhua Pei, Xinru Yang, Qing Cui, Xiao Lin, Fei Sun, Peng Jiang, Wenwu Ou, and Yongfeng Zhang. 2019. Value-

aware recommendation based on reinforced profitmaximization in e-commerce systems. arXiv:1902.00851. Retrieved

from https://arxiv.org/abs/1902.00851.

[87] Nikolaos Polatidis, Stelios Kapetanakis, Elias Pimenidis, and Konstantinos Kosmidis. 2018. Reproducibility of experi-

ments in recommender systems evaluation. In IFIP International Conference on Artificial Intelligence Applications and

Innovations. Springer, 401–409.

[88] Lutz Prechelt. 1998. Automatic early stopping using cross validation: Quantifying the criteria. Neural Netw. 11,

4 (1998), 761–767.

[89] Steffen Rendle. 2010. Factorization machines. In Proceedings of the IEEE International Conference on Data Mining.

IEEE, 995–1000.

[90] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian personalized

ranking from implicit feedback. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. 452–461.

[91] Steffen Rendle, Walid Krichene, Li Zhang, and John Anderson. 2020. Neural collaborative filtering vs. matrix factor-

ization revisited. In Proceedings of the 14th ACM Conference on Recommender Systems. 240–248.

[92] Steffen Rendle, Li Zhang, and Yehuda Koren. 2019. On the difficulty of evaluating baselines: A study on recommender

systems. arXiv:1905.01395. Retrieved from https://arxiv.org/abs/1905.01395.

[93] Jasson D.M. Rennie and Nathan Srebro. 2005. Fast maximummarginmatrix factorization for collaborative prediction.

In Proceedings of the 22nd International Conference on Machine Learning. 713–719.

[94] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to recommender systems handbook. In Recom-

mender Systems Handbook. Springer, 1–35.

[95] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor. 2010. Recommender Systems Handbook (1st ed.).

Springer-Verlag, Berlin.

[96] Marco Rossetti, Fabio Stella, andMarkus Zanker. 2016. Contrasting offline and online results when evaluating recom-

mendation algorithms. In Proceedings of the 10th ACM Conference on Recommender Systems (RecSys’16). Association

for Computing Machinery, New York, NY, 31–34. https://doi.org/10.1145/2959100.2959176

[97] Alan Said and Alejandro Bellogín. 2014. Comparative recommender system evaluation: Benchmarking recommen-

dation frameworks. In Proceedings of the 8th ACM Conference on Recommender Systems. 129–136.

[98] Alan Said and Alejandro Bellogín. 2015. Replicable evaluation of recommender systems. In Proceedings of the 9th

ACM Conference on Recommender Systems (RecSys’15). Association for Computing Machinery, New York, NY, 363–

364. https://doi.org/10.1145/2792838.2792841

[99] Guy Shani and Asela Gunawardana. 2011. Evaluating recommendation systems. In Recommender Systems Handbook.

Springer, 257–297.

[100] Lalita Sharma and Anju Gera. 2013. A survey of recommendation system: Research challenges. Int. J. Eng. Trends

Technol. 4, 5 (2013), 1989–1992.

[101] Thiago Silveira, Min Zhang, Xiao Lin, Yiqun Liu, and Shaoping Ma. 2019. How good your recommender system is?

A survey on evaluations in recommendation. Int. J. Mach. Learn. Cybernet. 10, 5 (2019), 813–831.

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

https://doi.org/10.1145/3383313.3418479
https://doi.org/10.1145/3383313.3418479
https://doi.org/10.1145/3298689.3346985
https://doi.org/10.1145/3289600.3291016
https://doi.org/10.1145/3109859.3109903
https://doi.org/10.1109/ICDM.2008.16
https://doi.org/10.1145/3109859.3109916
https://arxiv.org/abs/1902.00851
https://arxiv.org/abs/1905.01395
https://doi.org/10.1145/2959100.2959176
https://doi.org/10.1145/2792838.2792841

A Revisiting Study of Appropriate Offline Evaluation 32:39

[102] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012. Practical bayesian optimization of machine learning algo-

rithms. In Advances in Neural Information Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-

berger (Eds.), Vol. 25. Curran Associates, Inc., 2951–2959.

[103] Harald Steck. 2013. Evaluation of recommendations: Rating-prediction and ranking. In Proceedings of the 7th ACM

Conference on Recommender Systems. 213–220.

[104] Jianing Sun, Wei Guo, Dengcheng Zhang, Yingxue Zhang, Florence Regol, Yaochen Hu, Huifeng Guo, Ruiming Tang,

Han Yuan, Xiuqiang He, and Mark Coates. 2020. A framework for recommending accurate and diverse items using

bayesian graph convolutional neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining (KDD’20). Association for Computing Machinery, New York, NY, 2030–2039.

https://doi.org/10.1145/3394486.3403254

[105] Rui Sun, Xuezhi Cao, Yan Zhao, Junchen Wan, Kun Zhou, Fuzheng Zhang, Zhongyuan Wang, and Kai Zheng. 2020.

Multi-modal knowledge graphs for recommender systems. In Proceedings of the 29th ACM International Conference on

Information & Knowledge Management (CIKM’20). Association for Computing Machinery, New York, NY, 1405–1414.

https://doi.org/10.1145/3340531.3411947

[106] Zhu Sun, Jie Yang, Jie Zhang, Alessandro Bozzon, Yu Chen, and Chi Xu. 2017. MRLR: Multi-level representation

learning for personalized ranking in recommendation. In Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI’17). 2807–2813.

[107] Zhu Sun, Di Yu, Hui Fang, Jie Yang, Xinghua Qu, Jie Zhang, and Cong Geng. 2020. Are we evaluating rigorously?

Benchmarking recommendation for reproducible evaluation and fair comparison. In Proceedings of the 14th ACM

Conference on Recommender Systems. 23–32.

[108] Thanh Tran, Xinyue Liu, Kyumin Lee, and Xiangnan Kong. 2019. Signed distance-based deep memory recommender.

In Proceedings of the World Wide Web Conference (WWW’19). Association for Computing Machinery, New York, NY,

1841–1852. https://doi.org/10.1145/3308558.3313460

[109] Daniel Valcarce, Alejandro Bellogín, Javier Parapar, and Pablo Castells. 2018. On the robustness and discriminative

power of information retrieval metrics for top-n recommendation. In Proceedings of the ACM Conference on Recom-

mender Systems (RecSys’18). Association for Computing Machinery, New York, NY, 260–268. https://doi.org/10.1145/

3240323.3240347

[110] Saúl Vargas. 2014. Novelty and diversity enhancement and evaluation in recommender systems and information

retrieval. In Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information

Retrieval. 1281–1281.

[111] Hongwei Wang, Fuzheng Zhang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi Guo. 2019. Multi-task feature learn-

ing for knowledge graph enhanced recommendation. In Proceedings of the World Wide Web Conference (WWW’19).

Association for Computing Machinery, New York, NY, 2000–2010. https://doi.org/10.1145/3308558.3313411

[112] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. KGAT: Knowledge graph attention net-

work for recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining (KDD’19). Association for Computing Machinery, New York, NY, 950–958. https://doi.org/10.1145/

3292500.3330989

[113] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019. Neural graph collaborative filtering.

In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval

(SIGIR’19). Association for Computing Machinery, New York, NY, 165–174. https://doi.org/10.1145/3331184.3331267

[114] Xiang Wang, Yaokun Xu, Xiangnan He, Yixin Cao, Meng Wang, and Tat-Seng Chua. 2020. Reinforced negative sam-

pling over knowledge graph for recommendation. In Proceedings of the World Wide Web Conference 2020 (WWW’20).

Association for Computing Machinery, New York, NY, 99–109. https://doi.org/10.1145/3366423.3380098

[115] Zengmao Wang, Yuhong Guo, and Bo Du. 2018. Matrix completion with preference ranking for top-n recommenda-

tion. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI’18). International Joint

Conferences on Artificial Intelligence Organization, 3585–3591. https://doi.org/10.24963/ijcai.2018/498

[116] Bin Wu, Zhongchuan Sun, Xiangnan He, Xiang Wang, and Jonathan Staniforth. 2017. NeuRec. Retrieved from https:

//github.com/wubinzzu/NeuRec.

[117] Ga Wu, Maksims Volkovs, Chee Loong Soon, Scott Sanner, and Himanshu Rai. 2019. Noise contrastive estimation

for one-class collaborative filtering. In Proceedings of the 42nd International ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR’19). Association for Computing Machinery, New York, NY, 135–144.

https://doi.org/10.1145/3331184.3331201

[118] Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. 2016. Collaborative denoising auto-encoders for

top-n recommender systems. In Proceedings of the 9th ACM International Conference on Web Search and Data Mining

(WSDM’16). Association for ComputingMachinery, New York, NY, 153–162. https://doi.org/10.1145/2835776.2835837

[119] Xin Xin, Bo Chen, Xiangnan He, Dong Wang, Yue Ding, and Joemon Jose. 2019. CFM: Convolutional factorization

machines for context-aware recommendation. In Proceedings of the 28th International Joint Conference on Artificial

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

https://doi.org/10.1145/3394486.3403254
https://doi.org/10.1145/3340531.3411947
https://doi.org/10.1145/3308558.3313460
https://doi.org/10.1145/3240323.3240347
https://doi.org/10.1145/3308558.3313411
https://doi.org/10.1145/3292500.3330989
https://doi.org/10.1145/3331184.3331267
https://doi.org/10.1145/3366423.3380098
https://doi.org/10.24963/ijcai.2018/498
https://github.com/wubinzzu/NeuRec
https://doi.org/10.1145/3331184.3331201
https://doi.org/10.1145/2835776.2835837

32:40 W. X. Zhao et al.

Intelligence (IJCAI’19). International Joint Conferences on Artificial Intelligence Organization, 3926–3932. https://doi.

org/10.24963/ijcai.2019/545

[120] Xin Xin, Xiangnan He, Yongfeng Zhang, Yongdong Zhang, and Joemon Jose. 2019. Relational collaborative filtering:

Modeling multiple item relations for recommendation. In Proceedings of the 42nd International ACM SIGIR Conference

on Research and Development in Information Retrieval (SIGIR’19). Association for Computing Machinery, New York,

NY, 125–134. https://doi.org/10.1145/3331184.3331188

[121] Fengli Xu, Jianxun Lian, Zhenyu Han, Yong Li, Yujian Xu, and Xing Xie. 2019. Relation-aware graph convolutional

networks for agent-initiated social e-commerce recommendation. In Proceedings of the 28th ACM International Con-

ference on Information and Knowledge Management (CIKM’19). Association for Computing Machinery, New York,

NY, 529–538. https://doi.org/10.1145/3357384.3357924

[122] Feng Xue, Xiangnan He, XiangWang, Jiandong Xu, Kai Liu, and Richang Hong. 2019. Deep item-based collaborative

filtering for top-n recommendation. ACM Trans. Inf. Syst. 37, 3 (2019), 1–25.

[123] Hong-Jian Xue, Xinyu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen. 2017. Deep matrix factorization models

for recommender systems. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’17),

Vol. 17. Melbourne, Australia, 3203–3209.

[124] Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Deborah Estrin. 2018. Unbiased offline

recommender evaluation for missing-not-at-random implicit feedback. In Proceedings of the 12th ACM Conference on

Recommender Systems (RecSys’18). Association for Computing Machinery, New York, NY, 279–287. https://doi.org/

10.1145/3240323.3240355

[125] Yonghui Yang, Le Wu, Richang Hong, Kun Zhang, and MengWang. 2021. Enhanced graph learning for collaborative

filtering via mutual information maximization. In Proceedings of the 44th International ACM SIGIR Conference on

Research and Development in Information Retrieval. 71–80.

[126] Hsiang-Fu Yu, Nikhil Rao, and Inderjit S. Dhillon. 2016. Temporal regularized matrix factorization for high-

dimensional time series prediction. In Proceedings of the Conference and Workshop on Neural Information Processing

Systems (NIPS’16). 847–855.

[127] Junliang Yu, Min Gao, Jundong Li, Hongzhi Yin, and Huan Liu. 2018. Adaptive implicit friends identification over

heterogeneous network for social recommendation. In Proceedings of the 27th ACM International Conference on In-

formation and Knowledge Management. ACM, 357–366.

[128] Lu Yu, Chuxu Zhang, Shichao Pei, Guolei Sun, and Xiangliang Zhang. 2018. WalkRanker: A unified pairwise ranking

model with multiple relations for item recommendation.

[129] Wenhui Yu and Zheng Qin. 2020. Sampler design for implicit feedback data by noisy-label robust learning. In Proceed-

ings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’20).

Association for Computing Machinery, New York, NY, 861–870. https://doi.org/10.1145/3397271.3401155

[130] Wenhui Yu, Huidi Zhang, Xiangnan He, Xu Chen, Li Xiong, and Zheng Qin. 2018. Aesthetic-based clothing recom-

mendation. In Proceedings of theWorldWideWeb Conference (WWW’18). InternationalWorldWideWeb Conferences

Steering Committee, Republic and Canton of Geneva, CHE, 649–658. https://doi.org/10.1145/3178876.3186146

[131] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based recommender system: A survey and new

perspectives. ACM Comput. Surv. 52, 1 (2019), 5:1–5:38.

[132] Shuai Zhang, Lina Yao, Lucas Vinh Tran, Aston Zhang, and Yi Tay. 2019. Quaternion collaborative filtering for recom-

mendation. In Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI’19). International

Joint Conferences on Artificial Intelligence Organization, 4313–4319. https://doi.org/10.24963/ijcai.2019/599

[133] Shuai Zhang, Lina Yao, and Xiwei Xu. 2017. AutoSVD++ An efficient hybrid collaborative filtering model via con-

tractive auto-encoders. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development

in Information Retrieval. 957–960.

[134] Yongfeng Zhang, Qingyao Ai, Xu Chen, and W. Bruce Croft. 2017. Joint representation learning for top-n rec-

ommendation with heterogeneous information sources. In Proceedings of the 2017 ACM on Conference on Infor-

mation and Knowledge Management (CIKM’17). Association for Computing Machinery, New York, NY, 1449–1458.

https://doi.org/10.1145/3132847.3132892

[135] Yuan Zhang, Xiaoran Xu, Hanning Zhou, and Yan Zhang. 2020. Distilling structured knowledge into embeddings

for explainable and accurate recommendation. In Proceedings of the 13th International Conference on Web Search and

Data Mining (WSDM’20). Association for Computing Machinery, New York, NY, 735–743. https://doi.org/10.1145/

3336191.3371790

[136] Yan Zhang, Hongzhi Yin, Zi Huang, Xingzhong Du, Guowu Yang, and Defu Lian. 2018. Discrete deep learning for

fast content-aware recommendation. In Proceedings of the 11th ACM International Conference onWeb Search and Data

Mining (WSDM’18). Association for Computing Machinery, New York, NY, 717–726. https://doi.org/10.1145/3159652.

3159688

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

https://doi.org/10.24963/ijcai.2019/545
https://doi.org/10.1145/3331184.3331188
https://doi.org/10.1145/3357384.3357924
https://doi.org/10.1145/3240323.3240355
https://doi.org/10.1145/3397271.3401155
https://doi.org/10.1145/3178876.3186146
https://doi.org/10.24963/ijcai.2019/599
https://doi.org/10.1145/3132847.3132892
https://doi.org/10.1145/3336191.3371790
https://doi.org/10.1145/3159652.3159688

A Revisiting Study of Appropriate Offline Evaluation 32:41

[137] Feipeng Zhao and Yuhong Guo. 2017. Learning discriminative recommendation systems with side information. In

Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI’17). 3469–3475. https://doi.org/

10.24963/ijcai.2017/485

[138] Wayne Xin Zhao, Junhua Chen, PengfeiWang, Qi Gu, and Ji-RongWen. 2020. Revisiting alternative experimental set-

tings for evaluating top-n item recommendation algorithms. In Proceedings of the 29th ACM International Conference

on Information & Knowledge Management. 2329–2332.

[139] Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Yushuo Chen, Xingyu Pan, Kaiyuan Li, Yujie Lu, Hui Wang,

Changxin Tian, et al. 2021. Recbole: Towards a unified, comprehensive and efficient framework for recommendation

algorithms. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management. 4653–

4664.

[140] Han Zhu, Xiang Li, Pengye Zhang, Guozheng Li, Jie He, Han Li, and Kun Gai. 2018. Learning tree-based deep model

for recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining (KDD’18). Association for Computing Machinery, New York, NY, 1079–1088. https://doi.org/10.1145/

3219819.3219826

Received 14 May 2021; revised 10 March 2022; accepted 28 May 2022

ACM Transactions on Information Systems, Vol. 41, No. 2, Article 32. Publication date: December 2022.

https://doi.org/10.24963/ijcai.2017/485
https://doi.org/10.1145/3219819.3219826

