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ABSTRACT

Demographic attributes play an important role in retail mar-
ket to characterize different types of users. Such signals how-
ever are often only available for a small fraction of users in
practice due to the difficulty in manual collection process by
retailers. In this paper, we aim to harness the power of big
data to automatically infer users’ demographic attributes
based on their purchase data. Typically, demographic pre-
diction can be formalized as a multi-task multi-class pre-
diction problem, i.e., multiple demographic attributes (e.g.,
gender, age and income) are to be inferred for each user
where each attribute may belong to one of N possible classes
(N>2). Most previous work on this problem explores differ-
ent types of features and usually predicts different attributes
independently. However, modeling the tasks separately may
lose the ability to leverage the correlations among differen-
t attributes. Meanwhile, manually defined features require
professional knowledge and often suffer from under speci-
fication. To address these problems, we propose a novel
Structured Neural Embedding (SNE) model to automati-
cally learn the representations from users’ purchase data for
predicting multiple demographic attributes simultaneously.
Experiments are conducted on a real-world retail dataset
where five attributes (gender, marital status, income, age,
and education level) are to be predicted. The empirical re-
sults show that our SNE model can improve the performance
significantly compared with state-of-the-art baselines.
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1. INTRODUCTION

Obtaining users’ demographic attributes is crucial for re-
tailers to conduct market basket analysis [21], adjust mar-
keting strategy [11], and provide personalized recommenda-
tions [23, 27]. However, in practice, it is usually not easy
to obtain this kind of personal data such as age, gender,
and income, etc. This is particularly true for traditional of-
fline retailers®, who collect users’ demographic information
mostly in a manual way (e.g. requiring costumers to pro-
vide demographic information for registering some shopping
cards). Most users are reluctant to provide detailed infor-
mation or even refuse to register their demographics due to
privacy and other reasons. Through our analysis on a large
scale real-world retail dataset over shopping-cards where five
demographic attributes (i.e., gender, marital status, income,
age, and education level) are considered, as shown in Figure
1, more than 85% users only have partial attributes and 5%
users have no attributes at all.

The difficulty in collecting demographic attributes in re-
tail scenario thus raises an interesting research question:
Can we inference users’ demographic attributes automati-
cally based on their purchase behaviors? Although some
recent studies suggest that demographic attributes are pre-
dictable from different behavioral data, such as linguistics
writing [6], web browsing [17], electronic communication-
s [9, 13], social media [15, 29], and mobile data [4, 28, 29]
to our best knowledge, seldom practice has been conducted
on purchase behaviors in retail scenario.

In general, demographic prediction can be formalized as
a multi-task multi-class problem, i.e., multiple demographic
attributes (e.g., gender, age and income) are to be inferred
for each user based on their behavioral data where each at-
tribute may belong to one of N possible classes, N > 2 (e.g.,
age may refer to young, adult, or old). In the retail scenario,
the behavioral data refer to users’ purchase history typical-
ly recorded by the POS terminals. The prediction task may
take two forms: 1) Given a set of users with partial demo-
graphic attributes, how to predict the unknown attributes?
(referred to as Partial-Label prediction) 2) Given a set of
users with partially/fully labeled attributes, how to predict
the demographic attributes for new users? (referred to as
New-User prediction)

In this work, we mainly focus on traditional retailers in
offline business rather than those in online e-commerce,
where no additional behavioral data rather than transac-
tions is available for analysis. Hereafter we will use re-
tail/retailer for simplicity when there is no ambiguity.
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Figure 1: Distribution of demographic attribute count over
users with shopping card. X axis stands for the number of
available attributes per user, y axis indicates the proportion
of users.

Previous work on demographic prediction usually predict-
s different attributes independently based on manually de-
fined features [4, 19, 22, 28, 29]. For example, Zhong et
al. [29] tried to predict six demographic attributes (i.e., gen-
der, age, education background, sexual orientation, marital
status, blood type and zodiac sign) separately using spatial,
temporal and location knowledge features. However, manu-
ally defined features usually require professional knowledge
and often suffer from under specification. Meanwhile, by
predicting each attribute independently, one may not be
able to leverage the potential correlations between differ-
ent attributes (e.g., correlation between age and marital s-
tatus). Some recent studies proposed to take the relations
between different attributes into account [4, 28]. For exam-
ple, Dong et al. [4] employed a Double Dependent-Variable
Factor Graph model to predict gender and age simultaneous-
ly. Zhong et al. [28] attempted to capture pairwise relations
between different tasks when predicting six demographic at-
tributes from mobile data. However, these methods still rely
on various human-defined features which are often costly to
obtain.

To tackle the above problems, in this paper we propose
a novel Structured Neural Embedding (SNE) model to au-
tomatically learn the representations (i.e., features) from
users’ purchase data for predicting multiple demographic
attributes simultaneously in retail scenario. Specifically, we
characterize each user by his/her purchase history using the
bag-of-item representations. We then map each item to a
vector in a continuous space, aggregate all the item vec-
tors to form the user representation, and further feed this
representation to a log-bilinear model for structured predic-
tion. As compared with previous methods, the proposed
SNE model enjoys the following two merits: 1) The fea-
tures of users are automatically learned towards the goal of
the prediction tasks. 2) By employing a structured predic-
tion model, we can fully leverage the potential correlations
between different attributes to improve the prediction accu-
racy. The proposed SNE model can be learned efficiently
using the stochastic gradient descent (SGD) method.

We conduct extensive experiments on a real-world retail
dataset to demonstrate the effectiveness of the proposed
method. Some state-of-the-art baseline methods on demo-
graphic prediction and multi-task learning are taken into
comparison. We tested different methods on both the Partial-
Label and New-User prediction problems. The empirical re-
sults demonstrated that our approach is more effective than
all the baseline methods.

Overall, the major contributions of our work are as fol-
lows:

e We make the first attempt to investigate the prediction
power of users’ purchase data for demographic predic-
tion in retail scenario.

e We propose a novel SNE model for the multi-task multi-
class prediction problem which can not only learn the
data representations automatically but also capture
the relations between different attributes in a struc-
tured way.

e We conduct extensive experiments on a real-world re-
tail dataset to demonstrate the effectiveness of the pro-
posed SNE model as compared with different baseline
methods.

The rest of the paper is organized as follows. After a sum-
mary of related work in Section 2, we describe the problem
formalization of demographic prediction in retail scenario in
Section 3. In section 4 we present our proposed model in
detail. Section 5 concludes this paper and gives the future
work.

2. RELATED WORK

In this section we briefly review three research areas re-
lated to our work: demographic prediction, multi-task &
multi-class prediction, and representation learning.

2.1 Demographic Prediction

Demographic prediction has been studied in different s-
cenarios in academia. Early work on demographic predic-
tion attempted to predict demographic attributes based on
the linguistics writing and speaking. For example, Schler et
al. [22] found that there are significant differences in both
writing style and content between male and female bloggers
as well as among authors of different ages. Otterbacher [19]
used logistic regression model to infer users’ gender based
on content of reviews.

Later, the digital communication and Internet offered new
opportunities for inferring demographic attributes. Differ-
ent approaches have been proposed to infer demographic
attributes based on users’ browsing history [9, 17]. Torres
[5] found that the clicked pages were correlated with the de-
mographic characteristics of users. Hu et al. [9] calculated
demographic tendency of web pages, and modeled users’ de-
mographic attributes through a discriminative model. In [2],
Bi et al. infers the demographic attributes of search user-
s based on the models training on the independent social
datasets. They demonstrated that by leveraging social and
search data in a common representation, they can achieve
better accuracy in demographic prediction.

Recently, the fast development of online social network-
s and mobile computing technologies accumulated large s-
cale of user data, making it possible and also valuable to
infer users’ demographic attributes in these scenarios. Mis-
love [15] found that users with common profiles were more
likely to be friends and often formed a dense community.
Zhong et al. [28] proposed a supervised learning framework
to predict users’ demographic attributes based on mobile
data. Dong et al. [4] focused on micro-level analysis of the
mobile networks to infer users’ demographic attributes. Cu-
lotta et al. [3] fitted a regression model to predict users’ de-



mographic attributes using information on followers of each
website on Twitter.

As we can see, most existing work on demographic predic-
tion focused on designing different features for the prediction
tasks. Besides, to the best of our knowledge, seldom prac-
tice has been conducted on demographic prediction based
on purchase behaviors in retail scenario.

2.2 Multi-task & Multi-class Prediction

The idea of learning multiple tasks together is to improve
the generalization performance by leveraging the informa-
tion contained in the related tasks. A typical way for this
purpose is to learn tasks in parallel while using a shared
representation [4, 10, 28]. Many algorithms have been pro-
posed to solve multi-task learning with various kernels and
regularizers to address the correlation between tasks. For
example, Micchelli et al. [14] discussed how different kernels
can be used to model relations between tasks and present-
ed linear multi-task learning algorithms. Evgeniou et al. [7]
presented an approach to multi-task learning based on the
minimization of regularization functions.

Meanwhile, multi-class classification is the problem of clas-
sifying instances into one of the more than two classes. Usu-
ally two ways are used to solve this kind of problem: 1) one-
against-one [1], which builds a classification for each pair of
classes; and 2) one-against-all [25], which creates one binary
problem for each of classes.

In this paper, we formalize the demographic prediction in
retail scenario as a multi-task multi-class problem, where we
propose to solve it by using structured prediction based on
automatic representation learning.

2.3 Representation Learning

Learning representations of the data makes it easier to
extract useful information when building classifiers or other
predictors. That is why representation learning has attract-
ed more and more attention and become a field in itself in
the machine learning community.

Many remarkable empirical successes have been achieved
based on representation learning in various applications in
both academia and industry. For example, in speech recog-
nition and signal processing, Alex Graves et al. [8] designed
a deep recurrent neural network for speech recognition and
obtain the best score on benchmark. In object recognition,
Krizhevsky et al. [12] proposed to use convolutional neural
network to classify image and achieved the record-breaking
results. In natural language processing, Mnih [16] proposed
three graphical models to define the distribution of next
word in a sequence by using distributed representations.

In this work, we propose to use representation learning for
demographic prediction in retail scenario, a new application
area where representation learning might be helpful.

3. OUR APPROACH

In this section, we first introduce the formalization of de-
mographic prediction problem in retail scenario. We then
talk about the key idea of our approach. After that , we de-
scribe the proposed SNE in detail. Finally, we present the
learning and prediction procedure of SNE and give some
discussions on the model.

Table 1: List of demographic attributes used in this work

Attributes Values

gender male, female

young(14-24), adult(25-34),
age middle-age(35-49), old(>50)
marital status single, married
income ultra-low(<2k/month), low(2k-4k/month)
medium (4k-6k/month), high(>6k/month)

doctor, master,

bachelor, college,

high school, middle school

education level

3.1 Problem Formalization

In our work, we aim to predict multiple demographic at-
tributes based on users’ behavioral data in retail scenari-
o. Specifically, each user can be characterized by his/her
purchase history, i.e., a set of items. The demographic at-
tributes we are interested in include gender, age, marital
status, income, and education level, which are useful signals
for market basket analysis. The values each attribute may
take are listed in Table 1, and for each attribute the pos-
sible values are exclusive. For each user, given part/none
of his/her attributes, we want to predict all the unknown
attributes.

Obviously, the above prediction task can be formalized
as a multi-task multi-class problem. Specifically, let T' =
{T1,T>,..., Tk} be a set of multi-class prediction tasks (i.e.,
predicting demographic attributes), where each task Ty, € T'
is associated with Cj classes (i.e., multiple attribute values),
Cr > 2,k =1,2,...,K. The total class number across all
the tasks is C' = 1, C. Let U be a set of |U| = M users
and I be a set of |I| = N items. Each user is represented by
(@@, y),i =1,2,..., M, where '? denotes the purchase
history of the i-th user, and y(” = {ygi)7yéi)7 . ,yf,?} de-
notes the set of attribute labels of the i-th user. Note here
y,(cz) denotes the attribute label under the k-th task T, € T
for the 4-th user, which takes value from {1,2,...,C}.

Given the notations defined above, we define the following
two prediction problems:

e Partial-Label prediction: Given a set of users with
partial demographic attributes, the objective is to learn
a function to predict the remaining unknown attributes

f:xyr-svyv

where YT and YV denote the observed attributes and
that to be predicted over the same set of users X re-
spectively.

e New-User prediction: Given a set of users with par-
tially/fully labeled attributes, the objective is to learn
a function to predict the demographic attributes for
new users

foxt oyl xN vy

where XT and Y denote the purchase histories and
attributes of labeled users, X~ and Y™ denote the
purchase history and the attributes of the new users.
Note that here X N XN = (.
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Figure 2: Structured representation of multi-task multi-
class predictions.

We can see that the first problem focuses on predicting the
missing attributes for the same users used in training, while
the second one emphasizes the generalization ability of the
prediction model to new users.

3.2 Key Idea

In our work, we introduce a novel structured prediction
method based on representation learning to solve the above
demographic prediction problems. The key motivation of
this model comes from the following two folds.

Firstly, a fundamental problem in demographic predic-
tion based on users’ behavior data is how to represent users.
Many existing work investigated different types of human
defined features [4, 19, 28]. However, it is usually costly
to define features manually since expertise knowledge is re-
quired and one has to do the same job task by task. More-
over, human defined features may often suffer from under
specification since it is difficult to identify those hidden com-
plicated factors for prediction tasks. Some recent work em-
ploys unsupervised feature learning methods [9, 13, 29], like
Singular Vector Decomposition (SVD), to automatically ex-
tract low-dimension features from the raw data. However,
the features learned in an unsupervised manner may not be
optimal for the prediction tasks. Therefore, in this work we
proposed to automatically learn representations of users for
demographic prediction in a supervised way.

Secondly, as demographic prediction can be viewed as a
multi-task problem, there might be correlations among dif-
ferent tasks that can be leveraged to improve the prediction
accuracy. For example, users’ marital statuses are more like-
ly to be single if they are young, and a better educated per-
son may have more chance to have higher income. However,
most previous work treated different attributes as separate
prediction tasks [3, 13, 29|, thus ignored the correlations
among these attributes (detailed discussion please refer to
Section 3.4). In our work, we try to explicitly model the cor-
relation information between different tasks by turning the
multiple multi-class prediction tasks into a single structured
prediction task.

Here we take the attributes gender, age, and marital sta-
tus in our problem as an example. These three prediction
tasks are 2-class, 4-class, and 2-class classification problems
respectively. To turn them into a structured problem, we
encode each task’s label by a one-hot representation, and
concatenate these labels to generate a single structured la-
bel, as shown in Figure 2. The benefit of this structured
formalization is obvious, as the correlation among tasks can
now be explicitly encoded in this label vector, e.g. label vec-
tor referring to young and single is much more popular than
that referring to young and married. Therefore, by learn-
ing based on such structured labels, we can directly learn the
features that are useful for revealing the correlation between
multiple prediction tasks.
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Figure 3: Architecture of SNE model.
3.3 Structured Neural Embedding Model

Based on the above two ideas, we now present the pro-
posed Structured Neural Embedding (SNE) model in detail.
In retail scenario, each user is characterized by his/her pur-
chase history, i.e., a set of items. In SNE, we take the bag-
of-item representation as the user input, and map each item
to a vector in a continuous space. We then aggregate all the
item vectors using some operator to form the user represen-
tation, and feed this representation to a log-bilinear model
for the structured prediction. The architecture of our model
is shown in Figure 3.

More formally, let V! = {7} € RP*|j = 1,..., N} denote
all the item vectors in a D,-dimension continuous space.
For the i-th user with purchase history z(¥ (i-e., a set of
purchased items), we aggregate the item vectors to form the
user representation by

user representation

bag-of-item

7 = (@ : jea™)

where f(-) denotes the aggregation function. In our work,
we investigate three types of pooling functions as the aggre-
gation operator for computational efficiency.

e unique pooling:
(i) _ T () 1 _r
UV = funiq(Uj 1] €@ = OF
Funia(5 2 J ) |uniq(z®)| Z N
jEuniq(z(¥))

where um’q(w(i)) represents the set of unique items
purchased by i-th user.

e average pooling:
L =2
i —I . i —I
7 = Javg(Uj 1 j € a) = || Z Ys
j=1

e maz pooling:

max(Fi [1],..., a‘fz(i)‘m)
max(i[2],...,5] ¢y, 2D
(% - . i [Easd|
gD = fmax(v; RS 2 )) =
maa(# D], () [Du)

Where ¥ [I] denotes the [-th dimension in .

Based on the aggregated vector of the i-th user, SNE de-
fines the probability of assigning demographic attributes y*
to the user via a log-bilinear model:

exp(@VTWg)
dey exp(T)TWY))

Py = (1)



where y@ € {0, l}C denotes the structured vector of y<i), %
denotes all the possible structured vectors of different com-
binations of attributes, and W = RP**% denotes the in-
teraction matrix. Note that since each task is a multi-class
problem (i.e., only one class can be assigned to each task),
the total size of Y is |Y| = Hle Ch.

It is worth noting that when vy only contains partial at-
tributes, we will construct a set of structured vectors ¥
corresponding to the same y(i> by fixing the values for the
known attributes and enumerating all the possible values for
the missing attributes. Let yfj)

wrtia denote the set of corre-

sponding vectors, the computation of p(y(i) \a:m) becomes
. 7O T W)
Zg(i)eyégrtial e$p(v Wy )
> ey exp(TT W)
Since the enumeration of all the possible values of missing
attributes will appear in both numerator and denominator
in Equation (2), they can be eliminated for computation

simplicity. Therefore, we can obtain a general version of
Equation (1) handling both partial and full attributes

(| =

(2)

eap(TTWegt)

(). —
p(y |£U ) - €$p(ﬁ(i)Tchc) (3)

Ge€YVe

Where the subscript ¢ denotes a compact version of the vari-
able. A compact structured vector y_ﬁi) is a concatenation of
one-hot representations of known attributes in y“), while a
compact interaction matrix W, is formed by removing the
columns corresponding to the missing attributes from the
original W.

The objective function of SNE is then defined as the log
likelihood over all the users as follows:

M
tsne =y logp(y™|a) — A|OlfF (4)

i=1

where ) is the regularization constant and © are the model
parameters (i.e. © = {W, V'}).

3.4 Learning and Prediction

Learning SNE model involves maximize the objective func-
tion defined in Equation (4). However, the direct optimiza-
tion is intractable due to the high computational cost of
the normalization term which is proportional to |)|. There-
fore, we adopt the negative sampling technique [20, 24] for
efficient optimization, which approximates the original ob-
jective £snE with the following objective function:

M
INngG = Z (10g U(ﬁ(iwwﬁ(i))

i=1

+ kneg - Egnesry llog o (=50 TWG"9))]) - All0][%

where o(x) is the logistic function o(z) = 1/(1 4+ e™%), kneg
is the number of “negative” samples, and ¢ is the sampled
structured vector, drawn according to the noise distribution
Py which is modeled by empirical distribution over all pos-
sible attribute combinations. As we can see, the objective of
SNE with negative sampling aims to differentiate the ground
truth from noise by increasing the probability of the correct
label combination given the user input and deceasing that
of any wrong combinations.

We then apply stochastic gradient descent algorithm to
maximize the new objective function for learning the model.
The updating algorithm is shown in Algorithm 1.

Algorithm 1 Learning algorithm of SNE model

1: Initialize model ©: {W, VI} randomly

2: t=0
3: repeat
4 tt+1;
5 for i=1,...,|U| do
6 7 = @ :j € a®)
7: for each @ in Wc(_agi) do
]: @ 7D o (—5® o W)
9: end for
10: for k=1,...,n do
11: for each @ in W, do
12: @~ Do (5 5 ; )
13: end for
14: end for )
15: for each j € z(¥) do
: 500 py wor (=7 ) @) -
16: Yj < :1B€wc?7£1> Wo (=7 Eaﬁewcﬁél) w)
k2 meW, gned o (5 Laew gres ©)
17: end for

18: end for
19: until converge or t> num
20: return W,VI

With the learned item representations V! and interac-
tion matrix W, the prediction process is to find the best
attributes for a given user according to

yx = arg I;leagp(ylx)

For Partial-Label prediction problem, part of the attributes
are fixed and we want to decide the rest; For New-User pre-
diction problem, we need to predict the whole set of at-
tributes. These two problems can be solved similarly in an
efficient way. We first re-write the log-bilinear model as fol-
lows

exp(d™ W)
> gey exp(TT W)
x exp(t W)

- Y oW, (5)
J:1(Fli]=1)

Where 3]j] denotes the j-th entry in 7, W.; denotes the
j-th column of the interaction matrix, and I(-) denotes the
indicator function.

The Equation (5) shows that the probability of an at-
tribute set is proportional to the sum of scores (i.e.,v" W,;)
corresponding to the attribute assignments (i.e., §]j] set as
1). Since in our work each task is a multi-class problem
where only one class can be assigned, the best attribute set
is then a combination of assignments with the highest score
from each task given the input. In this way, for each user
input, we only need to conduct a forward computation to
generate the scores for each attribute entry, and select the
highest one for each task as the final prediction. For Partial-
Label problem, we simply select for those missing attributes
while leaving the known attributes fixed.

plylz) =

3.5 Discussion

In this section we try to compare the difference between
our structure learning model and conventional multi-task
learning methods.
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Figure 4: Architecture of joint model for multi-task multi-
class prediction.

gender marital status

user represemation
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In conventional multi-task learning, a joint model is typ-
ically employed to learn several related tasks at the same
time by using a shared representation, as shown in Figure 4.
In this model, each task is viewed as a separate prediction
problem and the objective function is a sum over these tasks:

M K
Lot =Y > logp(y’[z) — A%

i=1 k=1

Where y,(j) denotes the k-th attribute of the user.

The joint model can improve the prediction performance
by learning the commonality among multiple tasks through
the shared representation. This is the same as our SNE
model. The major difference lies in how we model the pre-
diction tasks. In joint model, each attribute is modeled as
a separate prediction task, thus the correlation between at-
tributes (like seeing one attribute makes it more likely to see
another simultaneously) is ignored. Some multi-task learn-
ing methods try to consider the correlation among tasks by
kernels or regularizers [7, 30], but they usually rely on ex-
plicit knowledge of relationships among tasks. While in our
structured model, we turn the multiple prediction tasks into
a single structured prediction task. Therefore, we can see
that in the objective function of the SNE model (Equation
(4)), there is no summation over the tasks. The learning
over the structured label vector makes us be able to learn
the important patterns revealing the correlation among mul-
tiple tasks.

One may argue that the structured formalization makes
the prediction task more difficult than original separate tasks
since the output space becomes much larger. However, with
the large scale user behavioral data, this sparse problem can
somehow be alleviated and our experimental results show
that we can indeed improve the prediction performance by
our structured formalization.

4. EXPERIMENTS

In this section, we conduct empirical experiments to demon-
strate the effectiveness of our proposed SNE model on de-
mographic attribute prediction in retail scenario. We first
introduce the experimental settings. Then we analyze the
effect of different aggregation operators and negative sam-
pling strategies to our SNE model. Finally, we compare our
SNE model to the baseline methods to demonstrate the ef-
fectiveness in both Partial-Label prediction and New-User
prediction scenarios.

Table 2: Distribution of demographic attributes on BeiRen
dataset.

attributes value distribution
male 29%
gender female 1%
young 7%
age adult 39%
middle age 42%
old 12%
martial status ;;I;ilgd Aﬁlngg
ultra-low 17%
income low 50%
medium 19%
high 14%
doctor <1%
master 8%
education bachelor 49%
level college 3%
high school 12%
middle school 28%

4.1 Experimental Settings

Here we introduce the experimental settings including the
dataset, baseline methods, and evaluation metrics.

4.1.1 Dataset

We conduct our empirical experiments over a real world
large scale retail dataset, namely BeiRen dataset?. This
dataset comes from a large retailer® in China, which record-
s its supermarket purchase histories during the period from
2012 to 2013. It contains 49, 290, 149 transactions over 220, 828
items belonging to 1,206,379 users. For research purpose,
the dataset has been anonymized with all the users and item-
s denoted by randomly assigned IDs for the privacy issue.
We first conduct some pre-process on the BeiRen dataset.
We only keep the users who have all the five demographic
attributes (i.e., gender, age, marital status, income, and ed-
ucation level) provided. We then extract all the transactions
related to these users to form their purchase histories, and
remove all the items bought by less than 5 times. After pre-
processing, the dataset contains 61,097 distinct items and
57,693 distinct users with full attributes. In average, each
user has bought about 110.6 distinct items. The detailed
distribution of different attributes are listed in Table 2.

For experiments on Partial-Label prediction, we randomly
set the observed ratio of users’ demographic attributes from
10% to 90% with the step length as 10%. All the users’ with
their partially observed attributes and purchase histories are
taken as training data, and the task is to predict the hidden
attributes of these users.

For experiments on New-User prediction, we split the dataset

into two non overlapping set, i.e. a training set and a testing
set, with the ratio 9 : 1. The resulting training set contains
51,923 users, and the test set contains 5, 770 users.

4.1.2 Baseline Methods

We evaluate our model by comparing with several state-
of-the-art methods on the demographic attribute prediction
task:

e POP: The most popular combination of demographic
attributes in the training set is taken as prediction.

*http://www.bigdatalab.ac.cn/benchmark/bm/bd?code=SNE

Shttp://www.brjt.cn/



Table 3: Comparison of different aggregation operators in SNE with varied observed attribute ratio from 10% to 90%

ratio wPrecision wRecall wF1 Hamming Loss
SNEuniq SNEmaz SNEgug SNEuniq SNEjaz SNEgqug SNEuniq SNEjmar SNEgwg  SNEuniq  SNEmaz SNEg.4
10 0.071 0.163 0.166 0.034 0.072 0.079 0.047 0.106 0.115 0.543 0.455 0.445
20 0.169 0.228 0.239 0.096 0.108 0.121 0.123 0.147 0.161 0.492 0.452 0.433
30 0.214 0.294 0.310 0.129 0.138 0.168 0.161 0.188 0.221 0.487 0.455 0.431
40 0.247 0.318 0.320 0.181 0.214 0.224 0.208 0.256 0.264 0.488 0.441 0.428
50 0.338 0.368 0.376 0.247 0.275 0.283 0.302 0.321 0.319 0.455 0.427 0.429
60 0.419 0.407 0.410 0.307 0.339 0.343 0.354 0.370 0.372 0.457 0.427 0.428
70 0.451 0.448 0.481 0.370 0.402 0.403 0.407 0.424 0.431 0.457 0.428 0.425
80 0.485 0.503 0.514 0.428 0.462 0.471 0.455 0.482 0.491 0.451 0.431 0.423
90 0.528 0.534 0.556 0.491 0.511 0.530 0.511 0.522 0.543 0.451 0.432 0.421

Obviously this heuristic baseline ignores users’ pur-
chase history, and only relies on the correlations among
demographic attributes for prediction.

e SVD-Single: A singular value decomposition (SVD)* is
first conducted over the user-item matrix to obtain low
dimensional representations of users. Then a logistic
model is learned over the low dimensional representa-
tion to predict each demographic attribute separately.
This method has been widely used in demographic at-
tribute prediction [9, 17, 29].

e SVD-Structured: Different from SVD-Single, a struc-
tured learning model (i.e., log-bilinear model) is used
to predict multiple demographic attributes based on
the low dimensional representations obtained by SVD
decomposition.

e JNE: The joint neural embedding (JNE) model is a
typical multi-task learning method as discussed in Sec-
tion 3.5. All the tasks are assumed to share the same
latent representation of the user, and a joint model is
employed to predict multiple attributes in parallel.

For both SVD and neural embedding based methods, we
run several times with random initialization by setting the
dimensionality as 100. We compare the average results of
different methods and demonstrate the results in the follow-
ing sections.

4.1.3 Evaluation Metrics

We employ the following evaluation metrics to evaluate
the performance of demographic prediction methods against
the groundtruth.

e Hamming Loss: the hamming loss is a wildly used
metric [18, 26], which calculates how many times an
instance-label pair is misclassified. The metric is cal-
culated as follows:

1y Py,
U145 |y

test

Hamming Loss =

Where A stands for the symmetric difference between
two sets, yt(;)st denotes the set of attributes to be pre-
dicted for the i-th user, and y*¥ denotes the set of
predicted attributes. Note that Hamming Loss is an
attribute level metric, which takes each demographic
attribute independently for evaluation. As we can see,
The smaller the value of Hamming Loss is, the better
performance the model obtains.

*http:/ /tedlab.mit.edu/~dr/SVDLIBC/

e Weighted F1: we follow the idea in [4] to use weighted
F1 as an evaluation metric since we consider each class
is as important as each other. The weighted F1 is
computed as follows:

1 I =yt
|y| Zz I(y = yg;)st)

wPrecision =

1 e i
wRecall = WZ Iy =y2,)

2 x wPrecision x wRecall

wil = wPrecision + wRecall

where I(-) is an indicator function. Note that these
weighted metrics are more strict than Hamming Loss
in that the prediction for a user is correct only when
the set of attributes are all correctly predicted. As we
can see, the weighted precision is the prediction accu-
racy in the label combination view while the weighted
recall is the prediction accuracy in the user view.

4.2 Study of the SNE Variations

We first analyze the multiple variations of the proposed
SNE model, including the aggregation operators and nega-
tive sampling strategies.

4.2.1 Effect of Aggregation Operators

In SNE model, we can employ different aggregation oper-
ators to obtain users’ representations from item vectors. In
this work, we introduced three types of pooling functions,
namely unique pooling, average pooling, and max pooling.
Here we study which kind of operator works better with
respect to the demographic prediction. We denote the cor-
responding SNE model as SNEniq, SNEguq, and SNEnq44,
and show the performance results over the Partial-Label pre-
diction problem in Table 3.

As we can see, among all the three variations of SNE mod-
el, SNE,.4 performs better than both SNE,niq and SNE a4
in terms of different measures in most cases. The results
indicate that the frequency information of items is impor-
tant for demographic prediction, which is ignored in both
SNEuniq and SNE,,qz. This is reasonable since someone
who frequently buys wine and cigarette is more likely to be
an adult man than someone happens to buy these items.

4.2.2  The Impact of Negative Sampling

To learn the proposed SNE model, we employ negative
sampling procedure for optimization. One parameter in this
procedure is the number of negative samples we draw each
time, denoted by kney. Here we investigate the impact of the
sampling number kney to the performance of Partial-Label
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Figure 5: Performance comparison over different methods on Partial-Label prediction in terms of wPrecision, wRecall, wF1
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Figure 6: Performance variation with the increase of neg-
ative samples in terms of wF1 with the observed attribute

ratio set as 50%.

prediction. Specifically, we tried kney, € {1,2,4,6,8,10},
and depict the test performance of SNE,,4 in terms of wF1
against kg in Figure 6, where the observed attribute ratio
is set as 50%.

As we can see, the test performance is quite stable with
the increase of the negative sampling number. We have also
tried other observed attribute ratios, and find similar stable
results. Therefore, the results demonstrate that the opti-
mization of the SNE model is not sensitive to the negative
sampling number. We set kg = 1 in our learning procedure
for efficiency.

4.3 Performance Comparison on Demograph-
ic Prediction

Now we compare our SNE model with the state-of-the-
art baseline methods on demographic predictions, includ-

ing both Partial-Label prediction and New-User prediction.
Here we choose SNE,.4 as the representative of our model
for clear comparison.

4.3.1 Partial-Label Prediction

The results of different methods on Partial-Label predic-
tion are shown in Figure 5. We have the following observa-
tions:

(1) It is unsurprising to see that with the increase of the ob-
served label ratio (i.e., more observed attributes in learning),
all the methods can obtain better performances in predic-
tion. (2) By simply using the most popular combination of
attributes as prediction, the POP method can achieve rea-
sonably good performance especially in terms of wRecall and
Hamming Loss. This is due to the fact that the attribute dis-
tribution is extremely skewed with the most popular combi-
nation (female, adult, married, medium income, high school)
takes up to 5.6% of users. Not surprisingly, POP is the worst
in terms of wPrecision and wF1, since it cannot predict oth-
er combinations of attributes. (3) Using SVD to obtain low
dimensional representations of users can obtain better per-
formance than POP. For example, the relative improvement
of SVD-Single over POP is 10.2%, and by SVD-Structured
over POP is 18.5%, in terms of wPrecision when observed
label ratio is 50%. (4) The structured learning methods
can improve the performances over the single models, by
considering the correlation among multiple prediction tasks.
For example, the relative improvement of SVD-Structured
over SVD-Single is about 10.1% in terms of wF1 when the
observed label ratio is 50%, and that of SNE over JNE is
about 14.0%. (5) By learning representations towards the
end task, we can achieve better performances than method-
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Table 4: Performance comparison on Partial-Label prediction over different user groups.

user activeness method wPrecision  wRecall wF1 Hamming Loss
POP 0.083 0.238 0.122 0.467
SVD-Single 0.182 0.234 0.211 0.476
SVD-Structured 0.259 0.242 0.251 0.466
Inactive JNE 0.304 0.269 0.286 0.452
SNE4vg 0.350 0.281 0.312 0.431
POP 0.093 0.259 0.138 0.445
SVD-Single 0.200 0.278 0.232 0.426
SVD-Structured 0.324 0.285 0.304 0.422
medium JNE 0.334 0.289 0.310 0.414
SNE4vg 0.371 0.289 0.324 0.411
POP 0.102 0.271 0.148 0.438
SVD-Single 0.189 0.289 0.229 0.412
SVD-Structured 0.327 0.286 0.305 0.417
active JNE 0.339 0.297 0.318 0.411
SNE4vg 0.361 0.299 0.327 0.410

s based on representations learned in an unsupervised way
(i.e., SVD). For example, the relative improvement of JNE
over SVD-Single is 11.1% in terms of wF1 when the observed
label ratio is 50%. (6) Finally, by learning the representa-
tions to predict multiple tasks in a structured way, our SNE
can achieve the best performance in terms of all the eval-
uation measures under different observed label ratios. The
improvement of SNE over the second best method (JNE)
is significant (p-value<0.01) in terms of all the evaluation
metrics.

4.3.2 New-User Prediction

We further compare the performance of SNE against base-
line methods on predicting new users’ demographic attributes.
Results of different methods on new user prediction are shown
in Figure 7.

From the results we can obtain similar conclusions as
in Partial-Label prediction. Both SVD decomposition and
structured learning can improve the performance, while su-
pervised representation learning can work better than unsu-
pervised one. The proposed SNE model can achieve the best
performance in New-User prediction, and the improvemen-
t of SNE over the second best method (JNE) is significant
(p-value<0.01) in terms of all the evaluation metrics.

4.3.3 Performance on Different User Group

To further investigate the performance of different meth-
ods, we split the users into three groups (i.e., inactive, medi-
um and active) based on their activeness. A user is taken as
inactive if there are less than 100 items in his/her purchase
history, and active if there are more than 500 items in the
purchase history. The remaining users are taken as medi-

um. In this way, the proportions of inactive, medium and
active are 62.6%, 31.3%, and 6.1% respectively. The results
of Partial-Label prediction when observed ratio is 50% are
shown in Table 4. As we can see, the relative performance
improvement of SNE over JNE is about 2.6%, 1.4%, 0.9%
in terms of wF1 on inactive, medium and active users re-
spectively. In other words, the performance gain of SNE is
larger on inactive users than medium and active users. The
results indicate that structured prediction can work better
by leveraging the correlation between tasks to compensate
the limited input information, as compared with joint pre-
diction.

5. CONCLUSION

In this paper,we address the problem of demographic pre-
diction based on users’ purchase behaviors. We propose a
novel SNE model which can automatically learn the repre-
sentations to predict a set of demographic attributes simul-
taneously. Experiments on the real-world purchase dataset
demonstrate that our model can outperform the state-of-the-
art baselines consistently under different evaluation metrics.

Although the SNE model is proposed in this retail scenari-
0, it is in fact a general model which can be applied on other
multi-task multi-class problems. In the future, we would like
to extend the usage of our SNE model to other application-
s to verify its effectiveness. Moreover, the proposed SNE
model is still a shallow model. Therefore, it would also be
interesting to try some deeper architectures to extract more
expressive representations for demographic prediction.
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