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Abstract Next basket prediction attempts to provide sequential recommendations to users based on a sequence of the

user’s previous purchases. Ideally, a good prediction model should be able to explore the personalized preference of the users,

as well as the sequential relations of the items. This goal of modeling becomes even more challenging when both factors

are time-dependent. However, existing methods either take these two aspects as static, or only consider temporal dynamics

for one of the two aspects. In this work, we propose the dynamic representation learning approach for time-dependent

next basket recommendation, which jointly models the dynamic nature of user preferences and item relations. To do so, we

explicitly model the transaction timestamps, as well as the dynamic representations of both users and items, so as to capture

the personalized user preference on each individual item dynamically. Experiments on three real-world retail datasets show

that our method significantly outperforms several state-of-the-art methods for next basket recommendation.

Keywords sequential recommendation, dynamic representation, next basket recommendation

1 Introduction

Next basket recommendation is becoming an in-

creasingly important task for both retailers and cus-

tomers, where many models have been devised. Among

these models, sequential recommender[1−3] and time-

aware collaborative filtering (CF)[4,5] are frequently in-

tegrated for this recommendation task. Sequential rec-

ommenders, e.g., the Markov approach[6], tend to ex-

plore the sequential relationships between items, and

make next purchase prediction given a user’s latest

transaction, so as to capture the sequential patterns

for recommendation, e.g., buying a phone may lead to

accessory purchases. The time-aware collaborative fil-

tering approach, on the other hand, tends to model

the dynamic nature of a user’s general preference by

learning over his/her overall purchasing history for reco-

mmendation.

In real-world retail scenarios, however, both the user

general interest and the item sequential relations could

be time-dependent. For example, the general inte-

rest may shift as a consumer’s age increases, while the

sequential relationship between products may change

over a season or year. As a result, it is essential to

jointly consider the temporal dynamics of user prefer-

ences and item relations for informed recommendation.

However, existing approaches mostly consider the

two types of dynamics separately. The sequen-

tial recommendation approach aims at modeling the

item sequences from users, and attempts to ex-

tract sequential purchasing patterns between items for

recommendation[6−10]; while the time-aware collabora-

tive filtering approach integrates time factors into con-

ventional CF models for dynamic user preference pre-
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diction and recommendation[11−13]. In real-world sce-

narios, however, the dynamics of user preferences and

item relations often depend on each other, and mod-

eling each aspect respectively may not provide an ac-

curate prediction of user preferences over items at the

current time.

In this paper, we jointly model the dynamics of user

preferences and item relationships, and cast the time-

dependent next basket prediction task as a dynamic

representation learning problem. To do so, we propose

a dynamic representation model (DRM) for next bas-

ket recommendation. Specifically, DRM embeds a user

or an item as a vector in a shared representation space.

For each user and item, a time drifting function is used

to model the dynamics of both user and the item repre-

sentations on the feature level. A hybrid representation

is then constructed by integrating both the user and

item representations, and finally the hybrid representa-

tion is used to predict the items in the next basket. We

conduct experiments over three real-world transaction

datasets, and the empirical results verify the effective-

ness of our approach compared with the state-of-the-art

baselines.

In summary, the contributions of our work are as

follows.

•We propose to consider the dynamic nature of user

preferences and item sequential relationships jointly for

next basket recommendation.

• We introduce a dynamic representation model for

next basket prediction, and further design a time drift-

ing function to model the temporal variations of both

users and items on the feature level.

• Through empirical experiments we verify that

our model can consistently outperform state-of-the-art

baselines on the next basket recommendation.

The following part of the paper is organized as fol-

lows. We first discuss related work in Section 2, and

then introduce our model in Section 3. We present the

experiments in Section 4 as well as case studies in Sec-

tion 5, and then make a conclusion with future research

potentials in Section 6.

2 Related Work

In this section, we briefly review the two major ap-

proaches to next basket recommendation, i.e., the se-

quential recommendation approach, and the time-aware

collaborative filtering approach.

2.1 Sequential Recommendation

The key idea of sequential recommender is to ex-

tract the sequential purchasing patterns between items

from user transactions for next basket recommendation.

Zimdars et al.
[1] proposed a sequential recommenda-

tion model based on Markov chains, and studied how

to extract sequential patterns to learn the next state

using probabilistic decision tree models. Mobasher[3]

studied different sequential patterns for recommenda-

tion, and found that contiguous sequential patterns are

more effective for sequential prediction tasks than gene-

ral sequential patterns. Yap et al.[14] introduced a new

competence score measure for personalized sequential

pattern mining and recommendation. Chen et al.[2]

modeled playlists as a Markov chain, and proposed logic

Markov embedding to learn the representations of songs

for playlist prediction.

Recently, some hybrid methods have also utilized

the sequential information to improve the recommen-

dation performance. Rendle et al.[6] adopted tensor

factorization to model user interest and sequential pat-

terns, while Yin et al.[15] adopted topic modeling to cap-

ture user intrinsic interest and temporal contexts. With

the development of representation learning techniques,

Wang et al.[8] introduced a hierarchical representation

model to consider the interactions between user gene-

ral interests and sequential behaviors, while Yu et al.[10]

adopted recurrent neural networks for sequential mod-

eling and recommendation. [16] adopts a metric space

learning approach to learn additive user-item relations

for sequential recommendation, and the method is fur-

ther generalized to factorization machines for sequential

recommendation[17]. Recently, researchers have also ex-

plored memory networks[18] and knowledge graphs[19]

for sequential recommendation.

2.2 Time-Aware Collaborative Filtering

Explicitly modeling the time factor has been

shown to be beneficial for time-sensitive next bas-

ket recommendation. Existing work on this topic

can be further categorized into time-aware general

recommendation[4,12,20] and time-aware sequential rec-

ommendation[7,9,21].

Time-aware general recommendation mainly focuses

on modeling the drifting nature of users’ general pref-

erences against time for recommendation. Koren[12]

proposed TimeSvd++ for dynamic collaborative fil-

tering by tracking the drifting user preferences and

item biases across time bins. Lu et al.[22] proposed a
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spatio-temporal approach to collaborative filtering for

dynamic recommendation. Xiong et al.[20] proposed a

Bayesian Probabilistic Tensor Factorization algorithm

to model the evolving relational data. Karatzoglou et

al.[4] leveraged tensor factorization to model the dy-

namics of users’ long-term interest against time, while

Ahmed et al.[11] presented a time varying hierarchical

user modeling approach that captures both the user’s

long-term and short-term interest.

Time-aware sequential recommendation conducts

time series analysis to extract sequential patterns from

different transactions. Based on the extracted sequen-

tial patterns, Wang et al.[7] modeled time context into

recommendation by adding an exponential decay func-

tion on each sequential pattern; Wang and Zhang[9]

adopted the opportunity model to capture the user’s

subsequent purchasing behaviors for recommendation;

Zhang et al.[21] leveraged feature-level time series ana-

lysis to achieve daily-aware recommendation. However,

these approaches require the presence of specific do-

main knowledge, which is usually expensive to obtain

in practical systems.

3 Our Approach

In this section, we first formalize the next basket

prediction problem when time factors are considered,

and then describe our proposed DRM model. After

that, we further present the model learning and recom-

mendation procedures of DRM.

3.1 Problem Formalization

Let I = {i1, i2, . . . , i|I|} be a set of items, and |U |

and |I| be the total number of users and items, respec-

tively. For each user u ∈ U , the purchase history Bu

of user u is given by Bu := (<Bu
1 , t

u
1>,<Bu

2 , t
u
2>, . . . ,

<Bu
bu−1, t

u
bu−1>), where Bu

m ⊆ I, m ∈ [1, bu − 1] repre-

sents the m-th transaction, and tum is the timestamp of

transaction Bu
m.

Given the purchase history of a user u, our task is

to learn a function F to recommend items that the user

would most probably buy at the next (i.e., the bu-th)

timestamp tubu :

F : Bu, u, tub → Bu
bu
.

3.2 Dynamic Representation Model (DRM)

In this work, we learn a recommendation model that

can integrate both the temporal dynamics of user pref-

erences and item sequential relations. Fig.1 shows the

architecture of DRM, where we learn both the dynamic

user and item representations for next basket recom-

mendation.

The model consists of three consecutive layers for

embedding and recommendation: 1) the dynamic layer

that learns the time-dependent user representations as

well as item sequence representations from historical

transactions; 2) the hybrid layer that aggregates user

and item dynamic representations into a unified rep-

resentation; 3) the output layer that summarizes the

knowledge learned from data for prediction and recom-

mendation. In the following, we present the design of

each layer and the philosophy of such designs.

3.2.1 Dynamic Layer

Let V U = {vU
u ∈ R

n|u ∈ U} denote all the user

vectors, and V I = {vI
i ∈ R

n|i ∈ I} denote all the item

vectors. Based on the above definition, the dynamic

representations of user vU
u (∆t) and item vI

i (∆t) over

…

Item1 Item2 Itemk

Softmax

Dynamic Layer 

Hybrid Layer 

Item in the t-th Transaction 

User u 

Items Purchased Before the t-th Transaction 

tb֓t
uu

tb֓t
uu

tb֓tk
uu tb֓t

uu

Fig.1. Architecture of DRM. User interests are aggregated from the user’s dynamic preference and the dynamic sequential behaviors.
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time are modeled as

{

vU
u,k(∆t) = f(∆t, u, k)vU

u,k + sUu,k,

vI
i,k(∆t) = f(∆t, i, k)vI

i,k + sIi,k,
(1)

where vU
u,k(∆t) is the k-th dimension of vU

u (∆t) (same

for vI
i,k(∆t) as to vI

i (∆t)), sUu ∈ SU and sIi ∈ SI are the

biases for users and items, respectively, and ∆t repre-

sents the time interval of the purchase in consideration

from the previous purchase action (e.g., three days).

Note that we model the dynamic representations of

users and items as the aggregation of a static part and

a time-variant part. Specifically, we take SU and SI to

represent the static representations of users and items

respectively, while in the time-variant part, f(·) is the

time drifting function, which models the variations of

different attributes against time. In this work, we adopt

the Weibull function as the time drifting function:

f(∆t) = γθ∆tγ−1e−θ∆tγ ,

where θ is the scale parameter, and γ is the shape para-

meter. The Weibull function increases with time when

γ > 1, decreases when γ < 1, and degenerates into an

exponential model when γ = 1[9,21]. Due to this pro-

perty, the Weibull function is very flexible to model the

different variations of user and item attributes against

time on the feature level. More specifically, we use

ΥU = {γU
u ∈ R

n|u ∈ U} and Υ I = {γI
i ∈ R

n|i ∈ I}

to represent the shape vectors of users and items, re-

spectively and use ΘU and ΘI as the scale vectors for

users and items, respectively. In (2), each dimension of

vU
u and vI

i has their own shape and scale parameters.

Based on the Weibull function, the drifting functions

over time for each dimension are written as follows:






f(∆t, u, k) = γU
u,kθ

U
u,k∆tγ

U
u,k−1e−θU

u,k∆t
γ
U
u,k

,

f(∆t, i, k) = γI
i,kθ

I
i,k∆tγ

I
i,k−1e−θI

i,k∆t
γ
I
i,k

.
(2)

In this way, we expect to model the different variations

of each latent feature against time.

For simplicity, we use average pooling to obtain the

item sequence representations in the dynamic layer:

vdyn
seq =

1

N(u)

∑

Bu
b
∈Bu

∑

i∈Bu
b

vI
i (t

u
b − tui ),

where N(u) is the number of items that user u pur-

chased, and the dynamic representation of user is,

vdyn
u = vU

u (t
u
b − tu1 ).

3.2.2 Hybrid Layer

A hybrid representation vHybrid
u is then obtained

from the aggregation of users’ dynamic representation

vdyn
u and the dynamic item sequence representation

vdyn
seq , so that DRM can benefit from both of the two

dynamic natures:

vHybrid
u = g(vdyn

u ,vdyn
seq ),

where g(·) denotes the aggregation operation. In this

work, we take the commonly used average pooling ope-

rator to obtain the hybrid representation.

3.2.3 Output Layer

In the output layer, DRM computes the probability

of buying the next item i via soft-max:

p(i ∈ Bu
b |u,B

u, tub ) =
exp(vI

i · vHybrid
u )

∑|I|
j=1 exp(v

I
j · vHybrid

u )
. (3)

3.3 Model Learning and Recommendation

DRM maximizes the log probability defined in (3)

over the whole transaction data of users for model learn-

ing:

ℓ =
∑

u∈U

∑

Bu
b
∈Bu

∑

i∈Bu
b

log p(i ∈ Bu
b |u,B

u, tub )− λ‖Φ‖2F ,

where λ is the regularization coefficient and Φ is the

model parameter. We adopt the negative sampling

technique[23,24] to approximate the original objective

function for training:

ℓNEG =
∑

u∈U

∑

Bu
b
∈Bu

∑

i∈Bu
b

(

log σ(vI
i · vHybrid

u ) +

k × Ei′∼PI
[log σ(−vI

i′ · v
Hybrid
u )]

)

− λ‖Φ‖2F ,

where σ(x) = 1
1+e−x is the sigmoid function, k is the

number of negative samples, and i′ is a sampled item,

drawn according to the noise distribution PI that is

modeled by empirical unigram distribution over items.

Basically, the objective of DRM with negative sam-

pling aims to derive the time-dependent ranking in a

discriminative way by maximizing the probability of an

observed item i and meanwhile minimizing the proba-

bility of an unobserved item i′.

With the learned dynamic user/item representa-

tions, given a user u, his/her historical transactions Bu,

and a candidate item i ∈ I, we calculate the probability

p(i ∈ I|u,Bu, tub ) by DRM according to (3), and then

recommend the top-n items to the user according to

their probabilities.
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4 Experimental Evaluation

4.1 Dataset Description

We evaluate different methods based on three real-

world sequential transaction datasets.

• The Ta-Feng dataset is a public dataset released

by RecSys conference, which covers a wide range of

products from food, office supplies, to furniture. It con-

tains 817 741 transactions from 32 266 users on 23 812

items.

• The BeiRen 1○ dataset belongs to a large retail

enterprise in China. We use the transactions of super-

market purchase history during the period from Jan.

to Sept. in 2013.

• The Cell Phone dataset comprises a large corpora

of reviews and timestamps related to phones and ac-

cessories. The dataset is from Amazon and spans from

May 1996 to July 2014.

Similar to previous work[6,8], we conduct pre-

processing on the three transaction datasets. For both

Ta-Feng and BeiRen datasets, we remove those items

bought by less than 10 users, and those users that have

bought less than 10 items in total. Statistics of the

three datasets after pre-processing are shown in Table 1.

For each of the datasets, we reserve the last transaction

(trans.) of each user for testing, the second last as the

validating, and the rest transactions for training.

4.2 Baseline Methods

We evaluate our model by the comparison with

both conventional but representative, and state-of-the-

art methods for next basket recommendation.

• TOP: a non-personalized strategy that recom-

mends the top-n most popular items to each user.

• FPMC: the Factorized PersonalizedMarkov Chain

model for sequential recommendation[6], which predicts

the next purchase based on the latest transaction of the

user with Markov assumptions.

• NMF: the Non-Negative Matrix Factorization

method for collaborative filtering[25], where nonneg-

ative MF is applied over the user-item binary inte-

raction matrix constructed by discarding the sequential

time information. We adopted the implementation in

NMF:DTU Toolbox 2○ for experiments.

• HRM: the state-of-the-art hierarchical representa-

tion model[8] for next basket recommendation, which

adopts item-level static representation learning for

user/item modeling. The implementation is publicly

available 3○.

• TimeSVD++: one of the most successful models

for dynamic user profiling[12], which considers the im-

pact of time on users’ general interest. This method

achieved a success in the Netflix contest.

• DREAM: a hybrid model that learns a dynamic

representation of a user but also captures global sequen-

tial features among baskets[10].

4.3 Evaluation Metrics

The performance is evaluated by predicting the last

transaction T u
tu

for each user u in the testing dataset.

For each recommendation method, we generate a list

of n items (n = 5) for each user u, denoted by R(u),

where Ri(u) stands for the item recommended on the

i-th position. We use the following measures to eva-

luate the recommendation lists against the actually pur-

chased items.

• F1-Score: the harmonic mean of precision and re-

call.

• HR: the hit ratio, which is the percentage of rec-

ommendation lists that contain at least one correctly

recommended item, i.e.,

HR =

∑

u∈U I(Bu
tu

⋂

R(u) 6= φ)

|U |
,

where I(·) is a binary indicator function, whose value

is 1 when the condition is true, and 0 otherwise.

Table 1. Statistics of the Datasets Used in Our Experiments

Dataset Number of Users Number of Items Number of Transactions Average Average Time

|U | |I| |T | Trans. Length Interval (day)

Ta-Feng 9 238 7 982 67 964 7.4 16.9

BeiRen 9 321 5 845 91 294 9.7 9.8

Cell Phone 25 503 10 429 54 585 1.7 33.1

1○http://www.bigdatalab.ac.cn/benchmark/bm/dd?data=Beiren, Oct. 2019.
2○http://cogsys.imm.dtu.dk/toolbox/nmf/, Oct. 2019.
3○http://www.bigdatalab.ac.cn/benchmark/bm/bd?code=HRM, Oct. 2019.
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• NDCG: the normalized discounted cumulative

gain that further takes into account the positions of

correctly recommended items in the list[26], which is

given by,

NDCG@n =
1

Zn

n
∑

j=1

2I(Rj(u)∈Bu
tu

) − 1

log2(j + 1)
,

where I(·) is still the binary indicator function, and Zn

is a normalization constant that denotes the maximum

possible value of NDCG given R(u).

4.4 Parameter Settings

All the embedding vectors are randomly initialized

in the range of (0, 1). For fair comparison, we select

the best learning rate for each method in the range of

{0.0001, 0.001, 0.01, 0.05, 0.1}, and the vector dimen-

sion is tuned in the range of {50, 100, 150, 200}. We

update them by conducting stochastic gradient descent

(SGD). For HRM, we use max pooling strategy and set

the drop rate to 0.5. For DRM, we set days as the basic

unit to model the variations of users’ interests and item

properties, and shape parameters are initialized in the

range of [0, 1.5].

4.5 Comparing Different Versions of DRM

We first compare the performances among different

combinations of dynamic components. As can be seen

in (1), both the user representations V U and the item

representations V I can or cannot be modeled in a dy-

namic manner, which gives us four possible versions of

DRM:

• U + V : a logic model, which assumes that both

user and item representations are static;

• U(t)+V : a user-temporal model, which only con-

siders the dynamics of user general interests;

• U + V (t): an item-temporal model, which only

considers the dynamics of item relations;

• U(t)+V (t): both the temporal dynamics of users

and items considered.

The results with different embedding sizes d are

shown in Table 2–Table 4, where each best result (in

bold) is significantly better than the second-best result

on p = 1 level, and d is the length of embedding vec-

tors. Models 1–4 represent U + V , U(t) +V , U +V (t),

and U(t) + V (t) respectively. We have the following

observations. 1) The logic model (U + V ) performs

the worst, which verifies that considering the time dy-

namics for either users or items can improve the perfor-

Table 2. Performance (%) Comparison Among the Four Versions of Dynamic Representation Model on Ta-Feng Dataset

Model d = 50 d = 100 d = 150 d = 200

F1-Score Hit Ratio NDCG F1-Score Hit Ratio NDCG F1-Score Hit Ratio NDCG F1-Score Hit Ratio NDCG

1 6.1 28.2 7.6 6.4 29.3 7.8 6.5 29.8 8.0 6.8 31.2 8.1

2 6.3 28.3 8.0 6.7 29.8 8.2 6.9 30.9 8.3 7.1 31.5 8.4

3 6.5 29.2 8.2 6.7 30.5 8.5 7.1 31.7 8.5 7.3 31.8 8.5

4 6.7 29.4 8.6 6.9 30.7 8.7 7.2 31.8 8.8 7.5 32.3 9.1

Table 3. Performance (%) Comparison Among the Four Versions of Dynamic Representation Model on BeiRen Dataset

Model d = 50 d = 100 d = 150 d = 200

F1-Score Hit Ratio NDCG F1-Score Hit Ratio NDCG F1-Score Hit Ratio NDCG F1-Score Hit Ratio NDCG

1 11.1 50.1 14.8 11.5 50.7 15.3 11.7 51.5 15.4 11.8 51.6 15.6

2 11.3 50.6 15.4 11.6 51.3 15.5 11.8 51.2 15.6 11.9 51.9 16.0

3 11.6 50.9 15.9 11.8 51.8 16.0 12.0 51.6 16.1 12.0 51.9 16.4

4 11.7 51.1 16.1 12.2 51.8 16.4 12.3 52.6 16.5 12.5 52.7 16.6

Table 4. Performance (%) Comparison Among the Four Versions of Dynamic Representation Model on CellPhone Dataset

Model d = 50 d = 100 d = 150 d = 200

F1-Score Hit Ratio NDCG F1-Score Hit Ratio NDCG F1-Score Hit Ratio NDCG F1-Score Hit Ratio NDCG

1 2.96 20.1 10.5 3.03 20.4 10.8 3.13 20.5 11.4 3.26 22.1 11.5

2 3.03 20.6 10.7 3.10 20.8 11.1 3.22 21.3 11.6 3.32 22.4 11.9

3 3.06 20.9 10.6 3.08 21.0 11.0 3.25 21.6 11.7 3.28 22.6 11.8

4 4.09 21.2 11.6 4.12 21.8 11.9 4.14 22.6 12.1 4.28 23.2 12.6
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mance of recommendation. 2)When considering user or

item dynamic representations, the performance on all of

the three datasets improved; however, results show that

U +V (t) performs better than U(t)+V . The potential

reason can be that the shifting of user preferences may

span over a long period of time (e.g., across several years

with age), which may not be well captured with several

months of transactions as in the data, while the dynam-

ics of item relations can be easily captured by frequent

co-purchases from different users. 3) When considering

both the dynamics of users and items, DRM achieves

the best performance.

4.6 Comparison with Baselines

We further compare our DRM approach with other

recommendation methods. Here we adopt the full dy-

namic model (i.e., U(t) + V (t)) for comparison. The

results for F1-score, HR, NDCG on all datasets under

different choices of embedding sizes or the number of

latent factors are shown in Fig.2.

We see the followings. 1) The non-personalized

TOP method did not perform well on most datasets

and measures. 2) Based on collaborative filtering, NMF

performs better than TOP with personalized recom-

mendations. 3) By modeling the dynamic user prefer-

50 100 150 200

0.08

0.09

0.10

0.11

0.12

0.13

Dimensionality

F

-
S
c
o
re

@
T
o
p
 5

 

 

50 100 150 200
0.10

0.12

0.14

0.16

0.18

Dimensionality

N
D
C
G

@
T
o
p
 5

 

 

50 100 150 200
0.40

0.45

0.50

0.55

Dimensionality

H
it
-
R

a
ti
o
@

T
o
p
 5

 

 

50 100 150 200

0.02

0.04

0.06

0.08

0.10

0.12

0.14

N
D
C
G

@
T
o
p
 5

 

 

50 100 150 200

0.05

0.15

0.25

H
it
-
R

a
ti
o
@

T
o
p
 5

 

 

50 100 150 200

0.020

0.025

0.030

0.035

0.040

0.045

F

-
S
c
o
re

@
T
o
p
 5

 

 

50 100 150 200

0.05

0.06

0.07

0.08

Dimensionality

F

-
S
c
o
re

@
T
o
p
 5

 

 

50 100 150 200
0.15

0.20

0.25

0.30

0.35

Dimensionality

H
it
-
R

a
ti
o
@

T
o
p
 5

 

 

50 100 150 200

0.07

0.08

0.09

Dimensionality

N
D
C
G

@
T
o
p
 5

 

 

(a)

TOP NMF TimeSVD++ HRM FPMC DREAM DRM

(b)

Dimensionality DimensionalityDimensionality

(c)

Fig.2. Performance comparison of DRM with TOP, FPMC, NMF, HRM, TimeSVD++, and DREAM over the three datasets. The
embedding size (or the number of latent factors) increases from 50 to 200 with a step of 50 on all the datasets. (a) Ta-Feng. (b)
BeiRen. (c) Cell Phone.
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ences (TimeSVD++), or the item sequential relation-

ships (FPMC), both TimeSVD++ and FPMC achieve

better results than static NMF recommender on all

cases, which implies the importance of dynamic model-

ing for next basket recommendation. Beyond this, fur-

ther analyses will also be provided in Subsection 4.7.

4) By integrating both (static) user preferences and

sequential patterns, HRM achieves better results than

TimeSVD++ and FPMC. 5) By further capturing the

temporal dynamics of both users and items, DRM out-

performs all the baselines in terms of all the evalua-

tion measures over the three datasets. Taking the Ta-

Feng dataset with the embedding size of 50 as an ex-

ample, when compared with the best baseline method

(i.e., DREAM), our DRM approach achieves around

1.8% and 1.1% improvements in terms of hit ratio and

NDCG, respectively. The improvements are statisti-

cally significant at p = 0.01.

4.7 Comparison Among Different User Groups

To further analyze the performance of different

methods, we split the users into three groups — inac-

tive, medium, and active — based on the time interval

between the latest three transactions of a user. Taking

the Ta-Feng dataset as an example, a user is empirically

treated as active if the time interval is less than seven

days, and inactive if the time is longer than 14 days.

The remaining users are classified into the medium

group. In this way, the proportions of active, medium,

and inactive users are 29.1%, 14.9%, and 56.0%, respec-

tively. Note that this is just an intuition study and the

thresholds are selected empirically according to practi-

cal experience. We present the comparison results on

the Ta-Feng dataset under the embedding size d = 50

(in Table 3), and the results on the BeiRen dataset as

well as on other embedding size choices are similar.

From the results we can get the following findings:

1) The non-personalized TOP method still did not per-

form well on most cases, including active, medium, and

inactive users. 2) By combining both sequential pat-

terns and user general interest, FPMC obtains better

performance than NMF, which is quite consistent with

the observation in previous work[6,8]. 3) By model-

ing interactions among user general interest and item

sequential patterns, HRM obtains better performance

than FPMC on all three user groups, and performs bet-

ter than NMF on inactive and medium users, which in-

dicates its advantage in working on users with sparse

records. 4) Finally, by considering the dynamic repre-

sentations of both users and items, DRM obtains the

best performance in terms of all the evaluation met-

rics, and benefits all the user groups, especially the ac-

tive user group. Compared with the second-best model

HRM, the relative performance improvements of DRM

on the active users are 1.0%, 3.6%, and 1.1% in terms

of F1-score, hit ratio, and NDCG, respectively. The

improvement is statistically significant (p < 0.01). It

verifies that by further considering temporal dynamics

of both users and items, DRM can improve the recom-

mendation performance significantly.

Table 3. Performance Comparison on Ta-Feng Dataset over

Different User Groups with Embedding Size d = 50

User Method F1-Score Hit Ratio NDCG

Activeness

Active TOP 0.042 0.189 0.082

FPMC 0.052 0.217 0.098

NMF 0.049 0.211 0.093

TimeSVD++ 0.055 0.230 0.105

HRM 0.056 0.236 0.115

DREAM 0.058 0.246 0.118

DRM 0.066 0.272 0.128

Medium TOP 0.052 0.240 0.097

FPMC 0.055 0.267 0.108

NMF 0.048 0.235 0.087

TimeSVD++ 0.059 0.263 0.110

HRM 0.065 0.299 0.115

DREAM 0.066 0.305 0.120

DRM 0.075 0.319 0.126

Inactive TOP 0.044 0.201 0.084

FPMC 0.050 0.242 0.102

NMF 0.048 0.221 0.086

TimeSVD++ 0.054 0.234 0.098

HRM 0.059 0.265 0.105

DREAM 0.060 0.270 0.111

DRM 0.065 0.288 0.122

5 Case Studies

To gain a deeper understanding of the temporal dy-

namics of users and items, we conduct case studies for

further analysis of our model in this section.

5.1 Time Series Analysis of Single Item

We first analyze the item dynamics over time. To

do so, we take the BeiRen dataset as an example and

set the embedding size to 50. We select four items from

the dataset for case study, which are biscuit, tissue,

shopping bag, and milk. We then compare their shape
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parameter γ to analyze the variation of their dynamic

parts in (1), and the details are shown in Fig.3.
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Fig.3. Visualization of the shape parameter for case-study items
selected from the BeiRen dataset when embedding size d = 50.
The y-axis represents the shape parameter γ, and the x-axis
indicates each of the 50 embedding dimensions.

From the results we have the following observations.

1) For each item, the dynamic variations of different

dimensions are very different — the value of the drift-

ing function on some dimensions increases over time

(γ > 1), while on some other dimensions the value de-

creases sharply over time (γ < 1). This observation is

consistent with our assumption that the dynamic vari-

ation of different features may be different even for the

same product. 2) The impact of dynamic part varies for

different items — taking tissue and shopping bag as ex-

amples, we see that the shape parameters of tissue are

greater than 1 on a lot of dimensions, making the value

of the drifting function increase over time, which means

that the representation (and thus the consumption) of

tissue products may be quite dynamic over time. In

contrast with tissue, the shape parameter of shopping

bag is extremely small on most dimensions, and thus

the drifting function value is close to 0, indicating that

the consumption of shopping bags is relatively static

over time, which is consistent with our intuitions in

practice.

5.2 Time Series Analysis of Sequential

Behaviors

In this subsection we analyze the item sequential

relationships over time. Specifically, we choose two se-

quential patterns from the BeiRen dataset, which are

〈toothpaste, toothpaste〉 and 〈toothpaste, toothbrush〉,

respectively. Given that a user has purchased a tooth-

paste, we analyze the probability that the user will

purchase a toothpaste or toothbrush over time through

(3) when the embedding size is 50, and the results are

shown in Fig.4.
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Fig.4. Probability distributions of (a) 〈toothpaste, toothpaste〉
and (b) 〈toothpaste, toothbrush〉 item relationship patterns over
time.

We can see that, after the user has purchased a

toothpaste, the probability of buying another tooth-

paste decreases over time at first, reaching a minimum

after around two weeks, and then begins to increase

over time, and after about 10 weeks the probability be-

gins to converge. On the other hand, the probability of

buying a toothbrush after a toothpaste increases over

time, and reaches a maximum after about five weeks.

This is consistent with our intuitions in daily life, and

this phenomenon is also frequently referred to as the

Law of Diminishing Marginal Utility[27] by economists.

5.3 Recommending Different Items over Time

We further check if our model can properly rec-

ommend time-dependent items over time, even for the

same user. We still take the BeiRen dataset and set the

embedding size to 50. Given that a user has purchased
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a toothbrush and biscuit, we provide top-3 item recom-

mendation by DRM and DREAM for each of following

weeks, as shown in Table 5.

Table 5. Top-3 Recommended Items of DREAM and DRM on

Each Week After the User Has Purchased a Toothbrush and

Biscuit

Week DREAM DRM

1 Toothpaste, toothbrush, Fruit, fish,

soap biscuit

2 Toothpaste, toothbrush, Fruit, cornmeal,

soap toothpaste

3 Toothpaste, toothbrush, Toothbrush, biscuit,

soap bread

Note: Words written in bold represent the items predicted cor-
rectly.

It is intuitive to see that DRM recommends the

same user with different products on different time

when an initial purchase has been made by the user.

Besides, the recommended items not only are time-

sensitive, but also accompany the already purchased

items by mining the wisdom embedded in large-scale

user purchasing transactions. In addition, by consi-

dering the time influence on users’ purchase behaviors,

DRM predicts that the user will buy the biscuit one

week later, and the toothbrush three weeks later cor-

rectly, while DREAM can only recommend the same

items against time as DREAM fails to consider the vari-

ations of users’ interest and item properties.

6 Conclusions

In this paper, we proposed to model the dynamic

nature of both user preferences and item sequential re-

lations at the same time. To do so, we proposed the

dynamic representation model (DRM) for next basket

recommendation. Both quantitive experiments and em-

pirical studies were conducted with three real-world

datasets, which verified both the effectiveness of our

model and the underlying intuition of our approaches.

This is our first step towards introducing the idea of

dynamic representation learning for recommendation,

and there is much room for further improvements. In

the future, we would like to model the cyclical nature of

user purchase behaviors as well as user repeating pur-

chases for recommendation. The basic ideas of dynamic

representation learning can also be applied to other

tasks beyond next basket recommendation, e.g., dy-

namic explainable recommendation, group recommen-

dation, and even personalized search tasks.
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