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ABSTRACT
Next basket recommendation is a crucial task in market bas-
ket analysis. Given a user’s purchase history, usually a se-
quence of transaction data, one attempts to build a recom-
mender that can predict the next few items that the us-
er most probably would like. Ideally, a good recommender
should be able to explore the sequential behavior (i.e., buy-
ing one item leads to buying another next), as well as ac-
count for users’ general taste (i.e., what items a user is typ-
ically interested in) for recommendation. Moreover, these
two factors may interact with each other to influence users’
next purchase. To tackle the above problems, in this pa-
per, we introduce a novel recommendation approach, name-
ly hierarchical representation model (HRM). HRM can well
capture both sequential behavior and users’ general taste by
involving transaction and user representations in prediction.
Meanwhile, the flexibility of applying different aggregation
operations, especially nonlinear operations, on representa-
tions allows us to model complicated interactions among
different factors. Theoretically, we show that our model
subsumes several existing methods when choosing proper
aggregation operations. Empirically, we demonstrate that
our model can consistently outperform the state-of-the-art
baselines under different evaluation metrics on real-world
transaction data.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining

General Terms
Algorithms, Experiments, Performance, Theory

Keywords
Hierarchical Representation Model; Sequential Behavior; Gen-
eral Taste; Next Basket Recommendation
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1. INTRODUCTION
Market basket analysis helps retailers gain a better un-

derstanding of users’ purchase behavior which can lead to
better decisions. One of its most important tasks is next
basket recommendation [7, 8, 12, 20]. In this task, usually
sequential transaction data is given per user, where a trans-
action is a set/basket of items (e.g. shoes or bags) bought at
one point of time. The target is to recommend items that
the user probably want to buy in his/her next visit.

Typically, there are two modeling paradigms for this prob-
lem. One is sequential recommender [5, 25], mostly relying
on Markov chains, which explores the sequential transac-
tion data by predicting the next purchase based on the last
actions. A major advantage of this model is its ability to
capture sequential behavior for good recommendations, e.g.
for a user who has recently bought a mobile phone, it may
recommend accessories that other users have bought after
buying that phone. The other is general recommender [1,
23], which discards any sequential information and learns
what items a user is typically interested in. One of the most
successful methods in this class is the model based collabo-
rative filtering (i.e. matrix factorization models). Obviously,
such general recommender is good at capturing the general
taste of the user by learning over the user’s whole purchase
history.

A better solution for next basket recommendation, there-
fore, is to take both sequential behavior and users’ general
taste into consideration. One step towards this direction is
the factorizing personalized Markov chains (FPMC) model
proposed by Steffen Rendle et al. [23]. FPMC can model
both sequential behavior (by interaction between items in
the last transaction and that in the next basket) and users’
general taste (by interaction between the user and the item
in the next basket), thus achieves better performance than
either sequential or general recommender alone. However, a
major problem of FPMC is that all the components are lin-
early combined, indicating that it makes strong independent
assumption among multiple factors (i.e. each component in-
fluence users’ next purchase independently).

Unfortunately, from our analysis, we show that the inde-
pendent assumption is not sufficient for good recommenda-
tions.

To tackle the above problems, we introduce a novel hier-
archical representation model (HRM) for next basket rec-
ommendation. Specifically, HRM represents each user and
item as a vector in continuous space, and employs a two-layer
structure to construct a hybrid representation over user and
items from last transaction: The first layer forms the trans-



action representation by aggregating item vectors from last
transaction; While the second layer builds the hybrid repre-
sentation by aggregating the user vector and the transaction
representation. The resulting hybrid representation is then
used to predict the items in the next basket. Note here
the transaction representation involved in recommendation
models the sequential behavior, while the user representa-
tion captures the general taste in recommendation.
HRM allows us to flexibly use different types of aggrega-

tion operations at different layers. Especially, by employing
nonlinear rather than linear operations, we can model more
complicated interactions among different factors beyond in-
dependent assumption. For example, by using a max pool-
ing operation, features from each factor are compared and
only those most significant are selected to form the higher
level representation for future prediction. We also show that
by choosing proper aggregation operations, HRM subsumes
several existing methods including markov chain model, ma-
trix factorization model as well as a variation of FPMC mod-
el. For learning the model parameters, we employ the neg-
ative sampling procedure [27] as the optimization method.
We conducted experiments over three real-world transac-

tion datasets. The empirical results demonstrated the effec-
tiveness of our approach as compared with the state-of-the-
art baseline methods.
In total the contributions of our work are as follows:

• We introduce a general model for next basket recom-
mendation which can capture both sequential behavior
and users’ general taste, and flexibly incorporate dif-
ferent interactions among multiple factors.

• We introduce two types of aggregation operations, i.e. av-
erage pooling and max pooling, into our hierarchical
model and study the effect of different combinations of
these operations.

• Theoretically we show that our model subsumes sev-
eral existing recommendation methods when choosing
proper aggregation operations.

• Empirically we show that our model, especially with
nonlinear operations, can consistently outperform state-
of-the-art baselines under different evaluation metrics
on next basket recommendation.

2. RELATED WORK
Next basket recommendation is a typical application of

recommender systems based on implicit feedback, where no
explicit preferences (e.g. ratings) but only positive observa-
tions (e.g. purchases or clicks) are available [2, 7]. These
positive observations are usually in a form of sequential da-
ta as obtained by passively tracking users’ behavior over a
sequence of time, e.g. a retail store records the transactions
of customers. In this section, we briefly review the related
work on recommendation with implicit feedback from the
following three aspects, i.e. sequential recommender, gener-
al recommender, and the hybrid model.
Sequential recommender, mainly based on a Markov

chain model, utilizes sequential data by predicting users’
next action given the last actions [6]. For example, Zim-
dar et al. [3] propose a sequential recommender based on
Markov chains, and investigate how to extract sequential
patterns to learn the next state using probablistic decision-
tree models. Mobasher et al. [18] study different sequential

patterns for recommendation and find that contiguous se-
quential patterns are more suitable for sequential prediction
task than general sequential patterns. Ghim-Eng Yap et
al. [29] introduce a new Competence Score measure in per-
sonalized sequential pattern mining for next-items recom-
mendation. Shani et al. [24] present a recommender based
on Markov decision processes and show that a predictive
Markov Chain model is effective for next basket prediction.
Chen et al. [5] model playlists as a Markov chain, and pro-
pose logistic Markov Embedding to learn the representations
of songs for playlist prediction. The main difference of our
work to all the previous approaches is the inclusion of users’
general taste in recommendation beyond sequential behav-
ior. Besides, the previous sequential recommenders seldom
address the interactions among items in sequential factors.

General recommender, in contrast, does not take se-
quential behavior into account but recommends based on
users’ whole purchase history. The key idea is collaborative
filtering (CF) which can be further categorized into memory-
based CF and model-based CF [1, 26]. The memory-based
CF provides recommendations by finding k-nearest-neighbour
of users or products based on certain similarity measure [16].
While the model-based CF tries to factorize the user-item
correlation matrix for recommendation. For example, Lee et
al. [12] treat the market basket data as a binary user-item
matrix, and apply a binary logistic regression model based
on principal component analysis (PCA) for recommenda-
tion. Hu et al. [10] conduct the factorization on user-item
pairs with least-square optimization and use pair confidence
to control the importance of observations. Pan et al. [19] al-
so introduce the weights to user-item pairs, and optimize the
factorization with both least-square and hinge-loss criteria.
Rendle et al . [22] propose a different optimization criterion,
namely Bayesian personalized ranking, which directly opti-
mizes for correctly ranking over item pairs instead of scoring
single items. They apply this method to matrix factoriza-
tion and adaptive KNN to show its effectiveness. General
recommender is good at capturing users’ general taste, but
can hardly adapt its recommendations directly to users’ re-
cent purchases without modeling sequential behavior.

Hybrid model, tries to integrate both sequential behav-
ior and users’ general taste for a better recommendation.
A state-of-the-art method is the FPMC model proposed by
Rendle et al. [23]. In their work, a transition cube is con-
structed where each entry of the cube gives the probability
of a user buying next item given he has bought a certain
item in the last transaction. By factorizing this cube, they
interpret this probability by three pairwise interactions a-
mong user, items in the last transaction and items in the
next basket. In this way, FPMC models sequential behavior
by interaction between items in the last transaction and that
in the next basket, as well as users’ general taste by interac-
tion between the user and the item in the next basket. It has
been shown that such a hybrid model can achieve better per-
formance than either a sequential or general recommender
alone.

3. MOTIVATION
Next basket recommendation is the task of predicting what

a user most probably would like to buy next when his/her
sequential transaction data is given. When tackling this
problem, both the sequential and general recommender have
their own advantages. The sequential recommender can ful-



Figure 1: Next basket recommendation by linear combination of sequential and general factors. The numbers above the movie
denote the recommendation scores produced by the recommender.

ly explore the sequential transaction data to discover the
correlation between items in consequent purchases, leading
to very responsive recommendation according to users’ re-
cent purchase. While the general recommender can leverage
users’ whole purchase histories to learn the taste of different
users, and thus achieve better personalization in recommen-
dation.
As shown in previous work [23], it is better to take both

sequential and general factors into account for better recom-
mendation. A simple solution is to use a linear combination
over these two factors. Furthermore, when modeling the
sequential factor, items in the last transaction are often lin-
early combined in predicting the next item [23]. Obviously,
one major assumption underlying these linear combinations
is the independence among multiple factors. That is, both
sequential and general factor influence the next purchase in-
dependently, and each item in the last transaction influence
the next purchase independently as well. Here comes the
question: Is the independent assumption among multiple
factors sufficient for good recommendation?
To answer the above question, we first consider the in-

dependent assumption between the general and sequential
factors. Let us take a look at an example shown in Figure 1.
Imagine a user in general buys science fiction movies like
‘The Matrix’ and ‘X-men’. In contrast to his usual buying
behavior, he recently has become fascinated in Scarlett Jo-
hansson and purchased ‘Match Point’ to watch. A sequential
recommender based on recent purchase would recommend
movies like ‘Lost in Translation’ (0.9) and ‘Girl with a Pearl
Earring’ (0.85), which are also dramas performed by Scar-
lett Johansson. (Note that the number in the parentheses
denotes the recommendation score). In contrast, a gener-
al recommender which mainly accounts for user’s general
taste would recommend ‘The Dark Knight’ (0.95) and ‘In-
ception’ (0.8) and other science fiction movies. By taking
into account both factors, good recommendations for the
user might be the movies like ‘Lucy’ and ‘The Avengers’,
which are science fiction movies performed by Scarlett Jo-
hansson. However, if we linearly combine the two factors,
i.e. independent in prediction, we may not obtain the right
results as we expected. The reason lies in that a good rec-
ommendation under joint consideration of the two factors
may not obtain a high recommendation score when calcu-
lating from each individual factor. For example, the scores
of ‘Lucy’ (0.3) and ‘The Avengers’ (0.2) in sequential rec-
ommender are low since they do not match well with the

genre preference (i.e. drama) based on the last purchase of
the user. Their scores are also not very high in general rec-
ommender since there are many better and popular movies
fitting the science fiction taste. Thus the linear combination
cannot boost the good recommendations to the top.

Let us take a further look at sequential factor alone, i.e. rec-
ommending next items based on the last transaction. For
example, people who have bought pumpkin will probably
buy other vegetables like cucumber or tomato next, while
people who have bought candy will probably buy other s-
nacks like chocolate or chips next. However, people who
have bought pumpkin and candy together will very proba-
bly buy Halloween costumes next. Again, we can see that if
we simply combine the recommendation results from pump-
kin and candy respectively, we may not be able to obtain
the right recommendations.

From the above examples, we find that models based on
linear combination do have limitations in capturing com-
plicated influence of multiple factors on next purchase. In
other words, independent assumption among different fac-
tors may not be sufficient for good recommendations. We
need a model that is capable of incorporating more com-
plicated interactions among multiple factors. This becomes
the major motivation of our work.

4. OUR APPROACH
In this section, we first introduce the problem formaliza-

tion of next basket recommendation. We then describe the
proposed HRM in detail. After that, we talk about the
learning and prediction procedure of HRM. Finally, we dis-
cuss the connections of HRM to existing methods.

4.1 Formalization
Let U = {u1, u2, . . . , u|U|} be a set of users and I =

{i1, i2, . . . , i|I|} be a set of items, where |U | and |I| denote
the total number of unique users and items, respectively.
For each user u, a purchase history Tu of his transaction-
s is given by Tu := (Tu

1 , T
u
2 , . . . , T

u
tu−1), where Tu

t ⊆ I,
t ∈ [1, tu − 1]. The purchase history of all users is denoted
as T := {Tu1 , Tu2 , . . . , Tu|U|}. Given this history, the task
is to recommend items that user u would probably buy at
the next (i.e. tu-th) visit. The next basket recommendation
task can then be formalized as creating a personalized total
ranking >u,t⊂ I2 for user u and tu-th transaction. With this
ranking, we can recommend the top n items to the user.
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Figure 2: The HRM model architecture. A two-layer struc-
ture is employed to construct a hybrid representation over
user and items from last transaction, which is used to predict
the next purchased items.

4.2 HRM Model
To solve the above recommendation problem, here we

present the proposed HRM in detail. The basic idea of our
work is to learn a recommendation model that can involve
both sequential behavior and users’ general taste, and mean-
while modeling complicated interactions among these factors
in prediction.
Specifically, HRM represents each user and item as a vec-

tor in a continuous space, and employs a two-layer structure
to construct a hybrid representation over user and items
from last transaction: The first layer forms the transaction
representation by aggregating item vectors from last trans-
action; While the second layer builds the hybrid represen-
tation by aggregating the user vector and the transaction
representation. The resulting hybrid representation is then
used to predict the items in the next basket. The hierar-
chical structure of HRM is depicted in Figure 2. As we can
see, HRM captures the sequential behavior by modeling the
consecutive purchases, i.e. constructing the representation
of the last transaction from its items for predicting the next
purchase. At the same time, by integrating a personalized
user representation in sequential recommendation, HRM al-
so models the user’s general taste.
More formally, let V U = {v⃗Uu ∈ Rn|u ∈ U} denote all

the user vectors and V I = {v⃗Ii ∈ Rn|i ∈ I} denote all the
item vectors. Note here V U and V I are model parameters
to be learned by HRM. Given a user u and two consecutive
transactions Tu

t−1 and Tu
t , HRM defines the probability of

buying next item i given user u and his/her last transaction
Tu
t−1 via a softmax function:

p(i ∈ Tu
t |u, Tu

t−1) =
exp(v⃗Ii · v⃗Hybrid

u,t−1 )∑|I|
j=1 exp(v⃗

I
j · v⃗Hybrid

u,t−1 )
(1)

where v⃗Hybrid
u,t−1 denotes the hybrid representation obtained

from the hierarchical aggregation which is defined as follows

v⃗Hybrid
u,t−1 := f2(v⃗

U
u , f1(v⃗

I
l ∈ Tu

t−1))

where f1(·) and f2(·) denote the aggregation operation at
the first and second layer, respectively.
One advantage of HRM is that we can introduce various

aggregation operations in forming higher level representa-
tion from lower level. In this way, we can model differ-

ent interactions among multiple factors at different layers,
i.e. interaction among items forming the transaction repre-
sentation at the first layer, as well as interaction between
user and transaction representations at the second layer. In
this work, we study two typical aggregation operations as
follows.

• average pooling : To aggregate a set of vector represen-
tations, average pooling construct one vector by taking
the average value of each dimension. Let V = {v⃗l ∈
Rn|l = 1, . . . , |V |} be a set of input vectors to be ag-
gregated, average pooling over V can be formalized as

favg(V ) =
1

|V |

|V |∑
l=1

v⃗l

Obviously, average pooling is a linear operation, which
assumes the independence among input representation-
s in forming higher level representation.

• max pooling : To aggregate a set of vector represen-
tations, max pooling constructs one vector by taking
the maximum value of each dimension, which can be
formalized as

fmax(V ) =


max(v⃗1[1],...,v⃗|V |[1])

max(v⃗1[2],...,v⃗|V |[2])

...
max(v⃗1[n],...,v⃗|V |[n])


where v⃗l[k] denotes the k-th dimension in v⃗l. In Con-
trary to average pooling, max pooling is a nonlinear
operation which models interactions among input rep-
resentations, i.e. features from each input vector are
compared and only those most significant features will
be selected to the next level. Take the movie recom-
mender mentioned in Section 3.1 for example, we sup-
pose vector representations are used for both sequen-
tial and general factors. If there are two dimensions
capturing the genre and actor/actress preference re-
spectively, max pooling then selects the most signifi-
cant feature in each dimension (e.g. science fiction and
Scarlett Johansson) in aggregating the two vectors.

Note that there are other ways to define the aggregation op-
erations, e.g. top-k average pooling or Hadamard product.
We may study these operations in the future work. Besides,
one may also consider to introduce nonlinear hidden layers
as in deep neural network [4]. However, we resort to sim-
ple models since previous work has demonstrated that such
models can learn accurate representations from very large
data set due to low computational complexity [17, 27].

Since there are two-layer aggregations in HRM, we thus
can obtain four versions of HRM based on different com-
binations of operations, namely HRMAvgAvg, HRMMaxAvg,
HRMAvgMax, and HRMMaxMax, where the two abbrevia-
tions in subscript denote the first and second layer aggre-
gation operation respectively. For example, HRMAvgMax

denotes the model that employs average pooling at the first
layer and max pooling at second layer.

As we can see, these four versions of HRM actually as-
sume different strength of interactions among multiple fac-
tors. By only using average pooling, HRMAvgAvg assume
independence among all the factors. We later show that
HRMAvgAvg can be viewed as some variation of FPMC.



Both HRMAvgMax and HRMMaxAvg introduce partial in-
teractions, either among the items in last transaction or be-
tween the user and transaction representations. Finally, by
using nonlinear operations at both layers, HRMMaxMax as-
sumes full interactions among all the factors.

4.3 Learning and Prediction
In learning, HRM maximizes the log probability defined in

Equation (1) over the transaction data of all users as follows

ℓHRM =
∑
u∈U

∑
Tu
t ∈Tu

∑
i∈Tu

t

log p(i ∈ Tu
t |u, Tu

t−1)− λ∥Θ∥2F

where λ is the regularization constant and Θ are the model
parameters (i.e. Θ={V U,V I}). As defined in Section 4.1, the
goal of next basket recommendation is to derive a ranking
>u,t over items. HRM actually defines the ranking as

i >u,t i
′ :⇔ p(i ∈ Tu

t |u, Tu
t−1) > p(i′ ∈ Tu

t |u, Tu
t−1)

and attempts to derive such ranking by maximizing the buy-
ing probability of next items over the whole purchase history.
However, directly optimizing the above objective function

is impractical because the cost of computing the full soft-
max is proportional to the size of items |I|, which is often
extremely large. Therefore, we adopt the negative sampling
technique [21, 27] for efficient optimization, which approxi-
mates the original objective ℓHRM with the following objec-
tive function

ℓNEG =
∑
u∈U

∑
Tu
t ∈Tu

∑
i∈Tu

t

(
log σ(v⃗Ii · v⃗Hybrid

u,t−1 )

+ k · Ei′∼PI
[log σ(−v⃗Ii′ · v⃗Hybrid

u,t−1 )]
)
− λ∥Θ∥2F

where σ(x) = 1/(1 + e−x), k is the number of “negative”
samples, and i′ is the sampled item, drawn according to the
noise distribution PI which is modeled by empirical unigram
distribution over items. As we can see, the objective of
HRM with negative sampling aims to derive the ranking
>u,t in a discriminative way by maximizing the probability
of observed item i and meanwhile minimizing the probability
of unobserved item i′s.
We then apply stochastic gradient descent algorithm to

maximize the new objective function for learning the mod-
el. Moreover, when learning the nonlinear models, we also
adopt Dropout technique to avoid overfitting. In our work,
we simply set a fixed drop ratio (50%) for each unit.
With the learned user and item vectors, the next basket

recommendation with HRM is as follows. Given a user u
and his/her last transaction Tu

tu−1, for each candidate item
i ∈ I, we calculate the probability p(i ∈ I|u, Tu

tu−1) accord-
ing to Equation (1). We than rank the items according to
their probabilities, and select the top n results as the final
recommendations to the user.

4.4 Connection to Previous Models
In this section, we discuss the connection of the proposed

HRM to previous work. We show that by choosing prop-
er aggregation operations, HRM subsumes several existing
methods including Markov chain model, matrix factoriza-
tion model as well as a variation of FPMC model.

4.4.1 HRM vs. Markov Chain Model
To show that HRM can be reduced to a certain type of

Markov chain model, we first introduce a special aggregation

operation, namely select-copy operation. When aggregating
a set of vector representations, the select-copy operation s-
elect one of the vectors according to some criterion, and
copy it as the aggregated one. Now we apply this operation
to both levels of HRM. Specifically, when constructing the
transaction representation from item vectors, the operation
randomly selects one item vector and copies it. When com-
bining the user and transaction representations, the opera-
tion always selects and copies the transaction vector. We re-
fer the HRM with this model architecture as HRMCopyItem.
The new objective function of HRMCopyItem using negative
sampling is as follows:

ℓCopyItem =
∑
u∈U

∑
Tu
t ∈Tu

∑
i∈Tu

t

(
log σ(v⃗Ii · v⃗Is)

+ k · Ei′∼PI
[log σ(−v⃗Ii′ · v⃗Is)]

)
− λ∥Θ∥2F

where v⃗Is denotes the vector of randomly selected item in
last transaction.

Similar as the derivation in [21], we can show that the
solution of HRMCopyItem follows that

v⃗Ii · v⃗Is = PMI(vIi , v
I
s)− log k

which indicates that HRMCopyItem is actually a factorized
Markov chain model (FMC) [23], which factorizes a transi-
tion matrix between items from two consecutive transactions
with the association measured by shifted PMI (i.e. PMI(x, y)−
log k). When k = 1, the transition matrix becomes a PMI
matrix.

In fact, if we employ noise contrastive estimation [27] for
optimization, the solution then follows that:

v⃗Ii · v⃗Is = logP (vIi |vIs)− log k

which indicates the transition matrix factorized by HRMCopyItem

become a (shifted) log-conditional-probability matrix.

4.4.2 HRM vs. Matrix Factorization Model
Now we only apply the select-copy operation to the second

layer (i.e. aggregation over user and transaction representa-
tions), and this time we always select and copy user vector.
We refer this model as HRMCopyUser. The corresponding
objective function using negative sampling is as follows:

ℓCopyUser =
∑
u∈U

∑
Tu
t ∈Tu

∑
i∈Tu

t

(
log σ(v⃗Ii · v⃗Uu )

+ k · Ei′∼PI
[log σ(−v⃗Ii′ · v⃗Uu )]

)
− λ∥Θ∥2F

Again, we can show that HRMCopyUser has the solution
in the following form:

v⃗Uu · v⃗Ii = PMI(vUu , vIi )− log k

In this way, HRMCopyUser reduces to a matrix factoriza-
tion model, which factorizes a user-item matrix where the
association between a user and a item is measured by shifted
PMI.

4.4.3 HRM vs. FPMC
FPMC conducts a tensor factorization over the transition

cube constructed from the transition matrices of all users. It
is optimized under the Bayesian personalized ranking (BPR)
criterion and the objective function using MAP-estimator is



Table 1: Statistics of the datasets used in our experiments.

dataset users |U | items |I| transactions T avg.transaction size avg.transaction per user

Ta-Feng 9238 7982 67964 7.4 5.9
BeiRen 9321 5845 91294 9.7 5.8
T-Mall 292 191 1805 5.6 1.2

as follows [23]:

ℓFPMC =
∑
u∈U

∑
Tu
t ∈Tu

∑
i∈Tu

t

∑
i′ ̸∈Tu

t

log σ(x̂u,t,i−x̂u,t,i′)−λ∥Θ∥2F (2)

where x̂u,t,i denotes the prediction model

x̂u,t,i := p̂(i ∈ Tu
t |u, Tu

t−1)

:= v⃗Uu · v⃗Ii +
1

|Tu
t−1|

∑
l∈Tu

t−1

(v⃗Ii · v⃗Il ) (3)

To see the connection between HRM and FPMC, we now
set the aggregation operation as average pooling at both
layers and apply negative sampling with k = 1. We denote
this model as HRMAvgAvgNEG1 and its objective function is
as follows

ℓAvgAvgNEG1 =
∑
u∈U

∑
Tu
t ∈Tu

∑
i∈Tu

t

(
log σ(v⃗Ii · v⃗Hybrid

u,t−1 )

+Ei′∼PI
[log σ(−v⃗Ii′ · v⃗Hybrid

u,t−1 )]
)
− λ∥Θ∥2F

=
∑
u∈U

∑
Tu
t ∈Tu

∑
i∈Tu

t

∑
i′ ̸∈Tu

t

(
log σ(v⃗Ii · v⃗Hybrid

u,t−1 )

+ log σ(−v⃗Ii′ · v⃗Hybrid
u,t−1 )

)
− λ∥Θ∥2F (4)

where

v⃗Hybrid
u,t−1 =

1

2
(v⃗Uu +

1

|Tu
t−1|

∑
l∈Tu

t−1

v⃗Il ) (5)

With Equation (3) and (5), we can rewrite Equation (4)
as follows

ℓAvgAvgNEG1 =
∑
u∈U

∑
Tu
t ∈Tu

∑
i∈Tu

t

∑
i′ ̸∈Tu

t

(
log σ(x̂u,t,i)

+ log σ(−x̂u,t,i′)
)
− λ ∥ Θ ∥2F +C

=
∑
u∈U

∑
Tu
t ∈Tu

∑
i∈Tu

t

∑
i′ ̸∈Tu

t

(
log σ(x̂u,t,i)

+ log(1− σ(x̂u,t,i′))
)
− λ ∥ Θ ∥2F +C (6)

Based on the above derivations, we can see that both
HRMAvgAvgNEG1 and FPMC share the same prediction mod-
el denoted by Equation (3), but optimize with slightly dif-
ferent criteria. FPMC tries to maximize the pairwise rank,
i.e. an observed item i ranks higher than an unobserved item
i′, by defining the pairwise probability using a logistic func-
tion as shown in Equation (2). While HRMAvgAvgNEG1 also
optimizes this pairwise rank by maximizing the probability
of item i and minimizing the probability of item i′, each de-
fined in a logistic form as shown in Equation (6). In fact, we
can also adopt BPR criterion to define the objective function
of HRMAvgAvg, and obtain the same model as FPMC.
Based on all the above analysis, we can see that the pro-

posed HRM is actually a very general model. By introducing

different aggregation operations, we can produce multiple
recommendation models well connected to existing method-
s. Moreover, HRM also allows us to explore other prediction
functions as well as optimization criteria, showing large flex-
ibility and promising potential.

5. EVALUATION
In this section, we conduct empirical experiments to demon-

strate the effectiveness of our proposed HRM on next bas-
ket recommendation. We first introduce the dataset, base-
line methods, and the evaluation metrics employed in our
experiments. Then we compare the four versions of HRM
to study the effect of different combinations of aggregation
operations. After that, we compare our HRM to the state-
of-the-art baseline methods to demonstrate its effectiveness.
Finally, we conduct some analysis on our optimization pro-
cedure, i.e. negative sampling technique.

5.1 Dataset
We evaluate different recommenders based on three real-

world transaction datasets, i.e. two retail datasets Ta-Feng
and BeiRen, and one e-commerce dataset T-Mall.

• The Ta-Feng1 dataset is a public dataset released by
RecSys conference, which covers products from food,
office supplies to furniture. It contains 817, 741 trans-
actions belonging to 32, 266 users and 23, 812 items.

• The BeiRen dataset comes from BeiGuoRenBai2, a
large retail enterprise in China, which records its su-
permarket purchase history during the period from
Jan. 2013 to Sept. 2013. It contains 1, 123, 754 trans-
actions belonging to 34, 221 users and 17, 920 items.

• The T-Mall3 dataset is a public online e-commerce
dataset released by Taobao4, which records the on-
line transactions in terms of brands. It contains 4298
transactions belonging to 884 users and 9, 531 brands.

We first conduct some pre-process on these transaction
datasets similar as [23]. For both Ta-Feng and BeiRen dataset,
we remove all the items bought by less than 10 users and
users that has bought in total less than 10 items. For the
T-Mall dataset, which is relatively smaller, we remove all
the items bought by less than 3 users and users that has
bought in total less than 3 items. The statistics of the three
datasets after pre-processing are shown in Table 1.

Finally, we split all the datasets into two non overlapping
set, i.e. a training set and a testing set. The testing set
contains only the last transaction of each user, while all the
remaining transactions are put into the training set.

1http://recsyswiki.com/wiki/Grocery shopping datasets
2http://www.brjt.cn/
3http://102.alibaba.com/competition/addDiscovery/index.htm
4http://www.taobao.com



Table 2: Performance comparison among four versions of HRM over three datasets

(a) Performance comparison on Ta-Feng

Models
d=50 d=100 d=150 d=200

F1-score Hit-ratio NDCG F1-score Hit-ratio NDCG F1-score Hit-ratio NDCG F1-score Hit-ratio NDCG

HRMAvgAvg 0.051 0.240 0.073 0.060 0.276 0.082 0.063 0.283 0.080 0.063 0.286 0.086
HRMMaxAvg 0.059 0.275 0.080 0.064 0.279 0.087 0.065 0.290 0.083 0.067 0.298 0.086
HRMAvgMax 0.057 0.262 0.080 0.064 0.288 0.085 0.065 0.289 0.082 0.068 0.293 0.090
HRMMaxMax 0.062 0.282 0.089 0.065 0.293 0.088 0.068 0.298 0.085 0.070 0.312 0.093

(b) Performance comparison on BeiRen

Models
d=50 d=100 d=150 d=200

F1-score Hit-ratio NDCG F1-score Hit-ratio NDCG F1-score Hit-ratio NDCG F1-score Hit-ratio NDCG

HRMAvgAvg 0.100 0.463 0.119 0.107 0.475 0.128 0.112 0.505 0.137 0.113 0.509 0.137
HRMMaxAvg 0.105 0.485 0.131 0.113 0.498 0.138 0.115 0.509 0.139 0.115 0.505 0.141
HRMAvgMax 0.106 0.494 0.131 0.114 0.512 0.140 0.115 0.510 0.141 0.115 0.510 0.140
HRMMaxMax 0.111 0.501 0.134 0.115 0.515 0.144 0.117 0.516 0.146 0.118 0.515 0.145

(c) Performance comparison on T-Mall

Models
d=10 d=15 d=20 d=25

F1-score Hit-ratio NDCG F1-score Hit-ratio NDCG F1-score Hit-ratio NDCG F1-score Hit-ratio NDCG

HRMAvgAvg 0.052 0.154 0.119 0.055 0.139 0.146 0.061 0.180 0.146 0.063 0.186 0.151
HRMMaxAvg 0.062 0.186 0.133 0.063 0.148 0.157 0.066 0.196 0.154 0.068 0.202 0.158
HRMAvgMax 0.061 0.186 0.133 0.063 0.148 0.153 0.064 0.191 0.157 0.066 0.196 0.159
HRMMaxMax 0.065 0.191 0.142 0.066 0.197 0.163 0.070 0.207 0.163 0.071 0.212 0.168

5.2 Baseline Methods
We evaluate our model by comparing with several state-

of-the-art methods on next-basket recommendation:

• TOP: The top popular items in training set are taken
as recommendations for each user.

• MC: A Markov chain model (i.e. sequential recom-
mender) which predicts the next purchase based on
the last transaction of the user. The prediction model
is as follows:

p(i ∈ Tu
tu |T

u
tu−1) :=

1

|Tu
tu−1|

∑
l∈Tu

tu−1

p(i ∈ Tu
tu |l ∈ Tu

tu−1)

The transition probability of buying an item based on
the last purchase is estimated from the training set.

• NMF: A state-of-the-art model based collaborative fil-
tering method [14]. Here Nonnegative Matrix Factor-
ization is applied over the user-item matrix, which is
constructed from the transaction dataset by discard-
ing the sequential information. For implementation,
we adopt the publicly available codes from NMF:DTU
Toolbox5.

• FPMC: A state-of-the-art hybrid model on next bas-
ket recommendation [23]. Both sequential behavior
and users’ general taste are taken into account for pre-
diction.

For NMF, FPMC and our HRM6 methods, we run several
times with random initialization by setting the dimensional-
ity d ∈ {50, 100, 150, 200} on Ta-Feng and BeiRen datasets,
and d ∈ {10, 15, 20, 25} on T-Mall dataset. We compare the
best results of different methods and demonstrate the results
in the following sections.

5http://cogsys.imm.dtu.dk/toolbox/nmf/
6http://www.bigdatalab.ac.cn/benchmark/bm/bd?code=HRM

5.3 Evaluation Metrics
The performance is evaluated for each user u on the trans-

action Tu
tu in the testing dataset. For each recommendation

method, we generate a list of N items (N=5) for each user
u, denoted by R(u), where Ri(u) stands for the item recom-
mended in the i-th position. We use the following quality
measures to evaluate the recommendation lists against the
actual bought items.

• F1-score: F1-score is the harmonic mean of precision
and recall, which is a widely used measure in recom-
mendation [9, 15, 23]:

Precison(Tu
tu , R(u)) =

|Tu
tu

∩
R(u)|

|R(u)|

Recall(Tu
tu , R(u)) =

|Tu
tu

∩
R(u)|

|Tu
tu
|

F1-score =
2× Precision× Recall

Precision + Recall

• Hit-Ratio: Hit-Ratio is a All-but-One measure used in
recommendation [13, 28]. If there is at least one item
in the test transaction also appears in the recommen-
dation list, we call it a hit. The Hit-Ratio is calculated
in the following way:

Hit-Ratio =

∑
u∈U I(Tu

tu

∩
R(u) ̸= ϕ)

|U |
where I(·) is an indicator function and ϕ denotes the
empty set. Hit-Ratio focuses on the recall of a rec-
ommender system, i.e. how many people can obtain at
least one correct recommendation.

• NDCG@k: Normalized Discounted Cumulative Gain
(NDCG) is a ranking based measure which takes into
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Figure 3: Performance comparison of HRM among TOP,MC,NMF, and FPMC over three datasets. The dimensionality is
increased from 50 to 200 on Ta-Feng and BeiRen, and 10 to 25 on T-Mall.

account the order of recommended items in the list[11],
and is formally given by:

NDCG@k =
1

Nk

k∑
j=1

2I(Rj(u)∈Tu
tu

) − 1

log2(j + 1)

where I(·) is an indicator function and Nk is a constant
which denotes the maximum value of NDCG@k given
R(u).

5.4 Comparison among Different HRMs
We first empirically compare the performance of the four

versions of HRM, referred to as HRMAvgAvg, HRMMaxAvg,
HRMAvgMax, HRMMaxMax. The results over three datasets
are shown in Table 2.
As we can see, HRMAvgAvg, which only uses average pool-

ing operations in aggregation, performs the worst among the
four models. It indicates that by assuming independence a-
mong all the factors, we may not be able to learn a good rec-
ommendation model. Both HRMMaxAvg and HRMAvgMax

introduce partial interactions by using max pooling either
at the first or the second layer, and obtain better results
than HRMAvgAvg. Take the Ta-Feng dataset as an example,
when compared with HRMAvgAvg with dimensionality set as
50, the relative performance improvement by HRMMaxAvg

and HRMAvgMax is around 13.6% and 9.8%, respectively.

Besides, we also find that there is no consistent dominan-
t between these two partial-interaction models, indicating
that interactions at different layers may both help the rec-
ommendation in their own way. Finally, by applying max
pooling at both layers (i.e. full interactions), HRMMaxMax

can outperform the other three variations in terms of all the
three evaluation measures. The results demonstrate the ad-
vantage of modeling interactions among multiple factors in
next basket recommendation.

5.5 Comparison against Baselines
We further compare our HRM model to the state-of-the-

art baseline methods on next basket recommendation. Here
we choose the best performed HRMMaxMax as the represen-
tative for clear comparison. The performance results over
Ta-Feng, BeiRen, and T-Mall are shown in Figure 3.

We have the following observations from the results. (1)
Overall, the Top method is the weakest. However, we find
that the Top method outperforms MC on the T-Mall dataset.
This might be due to the fact that the items in T-Mall
dataset are actually brands. Therefore, the distributions
of top popular brands on both training and testing dataset-
s are very close, which accords with the assumption of the
Top method and leads to better performance. (2) The NMF
method outperforms the MC method in most cases. A major
reason might be that the transition matrix estimated in the
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Figure 4: Performance variation in terms of F1-score against the number of negative samples over three datasets with
HRMMaxMax. The number of negative samples is increased from 1 to 25 on Ta-Feng, 10 to 60 on BeiRen, and from 1 to 6 on
T-Mall.

Table 3: Performance comparison on Ta-Feng over different
user groups with dimensionality set as 50.

user
activeness method F1-score Hit-Ratio NDCG@5

Inactive

Top 0.036 0.181 0.054
MC 0.042 0.206 0.058
NMF 0.037 0.198 0.046
FPMC 0.043 0.216 0.060

HRMMaxMax 0.048 0.236 0.062

Medium

Top 0.051 0.230 0.084
MC 0.059 0.262 0.088
NMF 0.052 0.234 0.072
FPMC 0.059 0.263 0.087

HRMMaxMax 0.068 0.299 0.097

Active

Top 0.045 0.207 0.074
MC 0.050 0.212 0.075
NMF 0.056 0.223 0.075
FPMC 0.054 0.224 0.080

HRMMaxMax 0.062 0.246 0.087

MC method are rather sparse, and directly using it for rec-
ommendation may not work well. One way to improve the
performance of the MC method is to factorize the transition
matrix to alleviate the sparse problem [23]. (3) By combin-
ing both sequential behavior and users’ general taste, FPM-
C can obtain better results than both MC and NMF. This
result is quite consistent with the previous finding in [23].
(4) By further introducing the interactions among multiple
factors, the proposed HRMMaxMax can consistently outper-
form all the baseline methods in terms of all the measures
over the three datasets. Take the Ta-Feng dataset as an ex-
ample, when compared with second best performed baseline
method (i.e. FPMC) with dimensionality set as 200, the rel-
ative performance improvement by HRMMaxMax is around
13.1%, 11.1%, and 12.5% in terms of F1-score, Hit-Ratio
and NDCG@5, respectively.
To further investigate the performance of different meth-

ods, we split the users into three groups (i.e., inactive, medi-
um and active) based on their activeness and conducted the
comparisons on different user groups. Take the Ta-Feng
dataset as an example, a user is taken as inactive if there
are less than 5 transactions in his/her purchase history, and
active if there are more than 20 transactions in the pur-
chase history. The remaining users are taken as medium.
In this way, the proportions of inactive, medium and active
are 40.8%, 54.5%, and 4.7% respectively. Here we only re-
port the comparison results on Ta-Feng dataset under one
dimensionality (i.e. d = 50) due to the page limitation. In
fact, similar conclusions can be drawn from other datasets.
The results are shown in Table 3.

From the results we can see that, not surprisingly, the Top
method is still the worst on all the groups. Furthermore, we
find that MC works better than NMF on both inactive and
medium users in terms of all the measures; While on active
users, NMF can achieve better performance than MC. The
results indicate that it is difficult for NMF to learn a good us-
er representation with few transactions for recommendation.
By combining both sequential behavior and users’ general
taste linearly, FPMC obtains better performance than MC
on inactive and active users, and performs better than NMF
on inactive and medium users. However, we can see the im-
provements are not very consistent on different user groups.
Finally, HRMMaxMax can achieve the best performance on
all the groups in terms of all the measures. It demonstrates
that modeling interactions among multiple factors can help
generate better recommendations for different types of users.

5.6 The Impact of Negative Sampling
To learn the proposed HRM, we employ negative sam-

pling procedure for optimization. One parameter in this
procedure is the number of negative samples we draw each
time, denoted by k. Here we investigate the impact of the
sampling number k on the final performance. Since the
item size is different over the three datasets, we tried dif-
ferent ranges of k accordingly. Specifically, we tried k ∈
{1, 5, 10, 15, 20, 25} on Ta-Feng, k ∈ {10, 20, 30, 40, 50, 60}
on BeiRen, and k ∈ {1, 2, 3, 4, 5, 6} on T-Mall, respectively.
We report the test performance of HRMMaxMax in terms of
F1-score against the number of negative samples over the
three datasets in Figure 4. Here we only show the results on
one dimension over each dataset (i.e. d = 50 on Ta-Feng and
BeiRen and d = 10 on T-Mall) due to the space limitation.

From the results we find that: (1) As the sampling num-
ber k increases, the test performance in terms of F1-score
increases too. The trending is quite consistent over the three
datasets. (2) As the sampling number k increases, the per-
formance gain between two consecutive trials decreases. For
example, on Ta-Feng dataset, when we increase k from 20
to 25, the relative performance improvement in terms of
F1-score is about 0.0011%. It indicates that if we continue
to sample more negative samples, there will be less perfor-
mance improvement but larger computational complexity.
Therefore, in our performance comparison experiments, we
set k as 25, 60, 6 on Ta-Feng, BeiRen and T-Mall, respec-
tively.

6. CONCLUSION
In this paper, we propose a novel hierarchical representa-

tion model (HRM) to predict what users will buy in next



basket. Our model can well capture both sequential be-
havior and users’ general taste in recommendation. What is
more important is that HRM allows us to model complicated
interactions among multiple factors by using different aggre-
gation operations over the representations of these factors.
We conducted experiments on three real-world transaction
datasets, and demonstrated that our approach can outper-
form all the state-of-the-art baseline methods consistently
under different evaluation metrics.
For the future work, we would like to try other aggrega-

tion operations in our HRM. We also want to analyze what
kind of interactions are really effective in next basket pre-
diction. Moreover, we would like to study how to integrate
other types of information into our model, e.g. the transac-
tion timestamp, which may introduce even more complicat-
ed interactions with the existing factors.
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