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ABSTRACT CCS CONCEPTS

For sequential recommendation, it is essential to capture and pre-
dict future or long-term user preference for generating accurate
recommendation over time. To improve the predictive capacity, we
adopt reinforcement learning (RL) for developing effective sequen-
tial recommenders. However, user-item interaction data is likely to
be sparse, complicated and time-varying. It is not easy to directly
apply RL techniques to improve the performance of sequential
recommendation.

Inspired by the availability of knowledge graph (KG), we propose
a novel Knowledge-guidEd Reinforcement Learning model (KERL
for short) for fusing KG information into a RL framework for se-
quential recommendation. Specifically, we formalize the sequential
recommendation task as a Markov Decision Process (MDP), and
make three major technical extensions in this framework, including
state representation, reward function and learning algorithm. First,
we propose to enhance the state representations with KG infor-
mation considering both exploitation and exploration. Second, we
carefully design a composite reward function that is able to compute
both sequence- and knowledge-level rewards. Third, we propose a
new algorithm for more effectively learning the proposed model.
To the best of our knowledge, it is the first time that knowledge
information has been explicitly discussed and utilized in RL-based
sequential recommenders, especially for the exploration process.
Extensive experiment results on both next-item and next-session
recommendation tasks show that our model can significantly out-
perform the baselines on four real-world datasets.
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1 INTRODUCTION

Sequential recommendation aims to recommend the next item or
next few items successively based on users’ sequential interaction
behaviors [10, 27]. Various methods have been proposed to ad-
dress this task, such as classic matrix factorization techniques [15]
and popular recurrent neural network approaches [5, 9, 14]. Typi-
cally, these methods are trained with Maximum Likelihood Estima-
tion (MLE) for fitting observed interaction sequence step by step.
However, long-term or overall effectiveness has not been well char-
acterized in the optimization objectives by previous studies. The
remarkable recent progress on reinforcement learning (RL) [24]
provides a promising solution to this problem by considering maxi-
mizing long-term performance.

Although it is appealing in theory, it is a non-trivial problem
to optimize long-term reward for sequential recommendation in
practice. First, user-item interaction data is likely to be sparse or
limited. It is not easy to directly learn towards a more difficult
optimization objective. Second, a core concept or mechanism for RL
models is the exploration process. It may not be reliable to adopt a
blind or random exploration strategy for capturing the evolvement
of user interests. In essence, user behaviors are complicated and
varying, and a more controllable learning process is preferred for
applying RL algorithms to sequential recommendation. Inspired
by the availability of knowledge graph (KG) and its applicability
in various fields [13, 32], we would like to utilize the informative
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Figure 1: An example to illustrate the drift of user inter-
ests. At the first stage, the user focuses on fiction movies,
and then switches to the crime and drama movies at the sec-
ond stage.

KG data to guide the RL-based learning method for sequential
recommendation.

Indeed, KG data has been widely utilized in recommendation
tasks [12, 26, 28]. Previous studies mainly utilize KG data for ex-
ploitation, while they seldom consider the effect of knowledge infor-
mation in the exploration process. As such, they cannot well capture
the potential drift of user preference in the coming time. To see
this, we present an illustrative example in Fig. 1, where a sequence
of five movies watched by a user has been given. Interestingly, the
overall sequence can be split into two consecutive stages (i.e., sub-
sequences) reflecting different movie preferences. The first three
movies are directed by “James Cameron”, and the rest two movies
are directed by his former wife “Kathryn Bigelow”. Intuitively, KG
data can be useful to improve the recommendation performance
within each individual stage, since the movies in the same stage
share similar KG characteristics. However, the movies across the
two stages are essentially different in many aspects, e.g., genre, style,
and story. Existing knowledge-aware sequential recommenders are
likely to be “trapped” in the first stage, and cannot effectively cap-
ture the preference drift between the two stages. Such a problem is
essentially about the trade-off between exploitation and exploration
in RL. Considering the two factors, it needs to develop a more prin-
cipled approach to sequential recommendation for better utilizing
knowledge information.

To address the above issues, in this paper, we propose a novel
Knowledge guidEd Reinforncement Learning model (KERL for
short) for fusing KG information into a RL framework for sequential
recommendation. Specifically, we formalize the sequential recom-
mendation task as a Markov Decision Process (MDP), and make
three major technical extensions in this framework. First, we pro-
pose to enhance the state representations with KG information. By
learning both sequence-level and knowledge-level state representa-
tions, our model is able to capture user preference more accurately.
Especially, we argue that it is important to utilize KG information in
the exploration process. To achieve this, we construct an induction
network that aims to predict future knowledge characteristics of
user preference. In this way, we can learn knowledge-based user
preference, considering both exploitation and exploration. Second,
we carefully design a composite reward function that is able to
compute both sequence-level and knowledge-level reward signals.
For sequence-level reward, we borrow the BLEU metric [21] from
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machine translation, and measure the overall quality of the rec-
ommendation sequence. For knowledge-level reward, we force the
knowledge characteristics of the actual and the recommended se-
quences to be similar. Third, we propose a truncated policy gradient
strategy to train our model. Concerning the sparsity and instability
in training induction network, we further incorporate a pairwise
learning mechanism with simulated subsequences to improve the
learning of the induction network. To evaluate the proposed model,
we construct extensive experiments on four datasets by comparing
it with several competitive baselines. Experiment results on both
next-item and next-session recommendation tasks show that our
model can significantly outperform all the baselines in sequential
recommendation tasks.
In summary, the contributions of our work are as follows:

e We formalize the sequential recommendation task into a
Markov Decision Process (MDP), and fuse KG information
to enhance the recommendation performance. To our knowl-
edge, it is the first time that knowledge graph data has been
explicitly discussed and utilized in RL-based sequential rec-
ommenders, especially for the exploration process.

e We make three novel extensions in the MDP framework for
sequential recommendation, including state representation,
reward function and learning strategy. With the three major
extensions, KG information has been effectively utilized and
integrated into the RL-based sequential recommenders.

e Empirical results on four real-world datasets show that our
model can consistently outperform state-of-the-art baselines
on both next-item and next-session recommendation tasks
under different metrics.

2 RELATED WORK

In this section we briefly review three research areas related to
our work, namely sequential recommendation, knowledge-based
recommendation, and reinforcement learning respectively.

Sequential Recommendation. Sequential recommendation aims
to predict users’ future behaviors given their historical interaction
data. Early work usually utilized Markov Chains to capture single-
step dependence of sequential behaviors. For example, Rendle et
al. [22] designed a personalized markov chain to provide recom-
mendations. Furthermore, Wang et al. [27] utilized representation
learning metric to model complex interactions between users and
items, while Pasricha et al. [19] combined translation and metric-
based approaches for sequential recommendation. Another line is
to model multistep sequential behaviors, which are proved to be a
more effective way for sequential recommendation, and Recurrent
Neural Networks (RNN) based models are widely applied in this
area [5, 20, 29]. Comparing with the previous MC-based models,
RNN based models can well capture longer sequential behaviors for
recommendation. For example, Quadrana et al. [20] utilized Gated
Recurrent Units (GRU) to model click sequences for session-based
recommendation. Li et al. [16] further fed attention mechanism
into RNN to capture both the user’s sequential behavior and main
purpose for session-based recommendation. Kang et al. [14] pro-
posed a novel self-attentive approach to modeling the pairwise item
interaction in user sequences.
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Knowledge-based Recommendation. With the development of
knowledge graph (KG) technology [2, 7, 17, 18], researchers also
tried to incorporate KG to improve the performance of recom-
mender systems. For example, Huang et al. [12] utilized Memory
Network to store and represent knowledge base information to
enhance the effectiveness and interpretability of sequential rec-
ommendation. Huang et al. [11] designed a multi-hop reasoning
architecture to utilize the taxonomy information for improving
item recommendation. Wang et al. [26] introduced preference prop-
agation to automatically propagate users’ potential preferences in
KG. Wang et al. [28] exploited high-order relations by extracting
paths from KG to capture more connectives between users and
items. Though it is effective to incorporate KG to improve the per-
formance, these works do not model users’ long-term benefits, thus
the performance might be limited.

RL-based Recommendation Reinforcement learning has been
introduced into recommender systems as its advnatange of con-
sidering users’ long-term feedbacks [34, 36]. For example, Zhang
et.al. [30] proposed a policy-gradient approach to searching paths in
KG to interpret the recommendation process. Zou et.al. [37] formu-
lated the ranking process as a multi-agent Markov Decision Process,
where mutual interactions among documents are incorporated to
compute the ranking list. Bai et.al. [1] explored adversarial training
over a model-based RL framework for recommendation. To our
knowledge, it is the first time that KG information has been explic-
itly discussed and utilized in RL-based sequential recommenders,
especially for the exploration process.

3 PRELIMINARY

Notations. We consider a sequential interaction scenario in recom-
mender systems, where a user selects interested items at different
time steps. Let U denote a set of users and J denote a set of items.
For each user u € U, we use i;‘:n = i;‘ — i;‘ — -+ — iY% to denote
the interaction sequence for user u, where i't‘ represents the item
that u has interacted with at ¢-th time step and n is the sequence
length. Similarly, we use i;l:k = i}i‘ — i]L'[+1 — i} to repre-
sent a subsequence of i}’ ranging from index j to index k, where
1 < j < k < n. In addition to users’ interaction histories, a knowl-
edge graph (KG) G is available for our task, where each record is
a knowledge triple involving two entities with some relation. We
assume that the item set can be aligned to the KG [33]. Via the
aligned KG, we can obtain the associated knowledge information
of the items, e.g., the author of a book or the director of a movie.

Task Definition. Based on these notations, our task of sequential
recommendation aims to predict the next item that a user u will
interact with given both the interaction history i’ and KG G. As
shown in [12], it will be similar to define the sequential recom-
mendation task in a basket- or session-based setting. For simplicity,
we only present the next-item setting, and will focus on next-item
recommendation in model description (Section 4).

Markov Decision Process. We consider a reinforcement learn-
ing (RL) approach to sequential recommendation. We first briefly
introduce Markov Decision Process (MDP) [25]. Generally, a MDP
can be described by a quintuple (S, A, T,R, x): (1) S is a set of
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states, and each s € S denotes the information state of the environ-
ment; (2) A is a set of actions, and each a € A denotes an action
that the agent that is able to perform; (3) T is the state transition
function for updating the state according to the action and cur-
rent state, ie., s;+1 = T(st, az); (4) R is the reward function and
r = R(s, a) giving the immediate reward of performing action a at
state s; and (5) 7(als) describes the behavior of an agent, usually
modeled by a probability distribution over the possible actions.

4 OUR APPROACH

In this section, we introduce the proposed Knowledge-Guided Re-
inforcement Learning Model (KERL) in detail, and the overall ar-
chitecture of KERL is presented in Fig. 2. Our approach is able
to effectively fuse knowledge graph (KG) information into the RL
framework for sequential recommendation. In what follows, we
start with a Markov Decision Process (MDP) formulation for our
task, and then present our extensions on state representation, re-
ward function and learning algorithms.

For simplicity, we describe the approach for a single user u, and
it is straightforward to extend the formulas to a set of users. We
drop the superscript of u in the notations (Section 3) for ease of
reading.

4.1 A MDP Formulation for Our Task

First, we use MDP to frame our task. In an MDP, there is an agent
to interact with the environment at discrete time steps. At each
time step ¢, the process is in some state s; € S. In our task, the envi-
ronment’s state can be considered to contain all useful information
for sequential recommendation, including interaction history and
KG. In our case, we consider two major elements:

st = [i1t, G, (1)

where i1.; denotes the previous interaction sequence generated by
user u and G denotes the KG information. The initial state is set
as: so = [0, G]. Following [6], we can use an embedding vector
Vs, € RLs to encode the information of state s;. vs, is expected to
encode useful information for representing state s;.

According to state s;, the agent performs an action a; € A,
which selects an item i;41 from the item set 7 for recommendation.
The action behavior is modeled by a policy 7(s;), which defines a
function that takes the state s; as input and outputs a distribution
over all the possible items. In this paper, we use a softmax function
to compute the probability of selecting an item:

exp{q;,,, , W1vs, }
Zijer exp{q; Wivs, }

n(atlst) = )
whereq; € RL! denotes the embedding vector for the j-th item, W
is the parameter in the bilinear product and vy, is the embedding
vector for state s;.

After each action, the agent receives a numerical intermediate
reward, ie., r;+1 = R(s¢, ap). The reward function can be set to
reflect the recommendation performance as needed in our task.
Furthermore, it utilizes the transition function T (T : S X T — S)
to update the state:

st+1 = T(sg,az) = T([u, i, Gl, ij(at))’ ©®)
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Figure 2: The overall architecture of Knowledge-Guided Reinforcement Learning Model (KERL). KERL formalizes the sequen-
tial recommendation by a MDP, and three novel extensions are designed to fuse KG information to enhance the recommen-

dation performance.

The new state s;+1 can be written as [i1.;+1, G], and is also associ-
ated with an embedding vector vy, .

4.2 Learning Knowledge-Enhanced State
Representation

A key point for MDP-based algorithms is to model and learn a
good state representation, since it encodes necessary information
characteristics for a state. Although many RL methods have been
proposed in sequence-based tasks [21, 35], they mainly focus on the
learning algorithm and lack the utilization of external knowledge
information. Here, we propose to incorporate knowledge infor-
mation to enhance the state representations, and set two kinds
of state representations, namely sequence-level and knowledge-
level state representations. In this wayj, it is expected to guide the
sequence-level RL learning algorithm using the informative KG
data.

4.2.1 Sequence-level State Representation. For the first kind of state
representations, we adopt a standard recurrent neural network for
encoding previous interaction sequence:

h; = GRU(hy—1, q;,; Pgru) ©

where GRU(') is the Gated Recurrent Unit [4], q;, is the embedding
vector for item i, and ®gy,, denotes all the related parameters of
the GRU network. Such a representation mainly captures sequential
characteristics of user preference, and it does not utilize knowledge
information for deriving state representations.

4.2.2  Knowledge-level State Representation. As shown in [12], KG
data is useful to improve the performance of sequential recommen-
dation algorithms. However, previous methods mainly consider
enhancing item or user representations with KG data for fitting
short-term behaviors with MLE [35]. They seldom study how KG
data can be utilized for exploration that optimizes long-term objec-
tive. To make a good trade-off between exploitation and exploration,
we consider modeling two kinds of knowledge-based preference
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for a user, namely current knowledge-based preference (short as
current preference) and future knowledge-based preference (short
as future preference).

Learning Current Preference. It is relatively easy to derive the
current knowledge characteristics based on historical data. Recall
that, each item i is associated with an entity e; in KG G. We utilize
the widely used KG embedding method TransE [3] to derive an em-
bedding vector for an item i, denoted by Ve, € RLE. Furthermore,
we use a simple average pooling method to aggregate all the KG
embeddings of the historical items that a user has interacted with:

¢

c; = Z Average(ve;, ). (5)
i=1

Note that here we do not consider temporal information or attention

mechanism in the above equation, since it does not show significant

performance improvement than the above simple method.

Predicting Future Preference. As the key point to achieve effec-
tive exploration, we incorporate future preference for capturing the
possible interest evolving of a user at upcoming time steps. Intu-
itively, knowing future preference is useful for sequential recom-
mendation, especially in a RL setting. Based on current preference,
our idea is to develop an induction network to directly predict the
future preference. Specially, we construct a neural network using a
Multi-Layer Perception. At time step ¢, we predict a k-step future
preference representation taking as input the current preference
representation ¢; (Eq. 5):

114k = MLP(cs; @pypp), (6)

where f;.;, 1 denotes the k-step future preference at time ¢, and we
use @y, to represent parameters used in the induction network.
We assume that knowledge-based preference should not change
too much at consecutive time steps. Hence, we aim to predict future
preference based on existing information. Learning future prefer-
ence from KG data is particularly useful to a RL-based algorithm,
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since it is key to develop a reasonable and informative exploration
process. By using a MLP component, the induction network is ex-
pected to better capture the evolvement of user interests, especially
preference drift.

4.2.3  Deriving the Final State Representation. Based on the above
discussions, we are ready to give the final state representation in
our model. For a state s;, its representation vg, is the combination
of three representation vectors:

™)

where “®” is the vector concatenation operator, h; is the sequence-
level state vector (Eq. 4), ¢; is the current knowledge-based pref-
erence (Eq. 5) and f;.; . is the future knowledge-based prefer-
ence (Eq. 6). The first factor h; mainly characterizes sequence-level
information, the second factor ¢; summarizes the existing knowl-
edge characteristics for achieving knowledge-based exploitation,
and the third factor f;.;, . predicts possible future preference for
achieving knowledge-based exploration. By combining the three
factors, our approach naturally incorporates KG data for state repre-
sentation in the MDP framework, making a good trade-off between
exploitation and exploration.

vs, =h; ®cr @44,

4.3 Setting the Reward with Knowledge
Information

Defining an appropriate reward function is especially important
for RL algorithms. In sequential recommendation, the final perfor-
mance is usually measured based on the exact match for item IDs.
While, the interaction sequence is generated by a user according
to her/his preference over item attributes or profiles (which can be
obtained from KG). Hence, besides item-level performance, it is also
important to measure the quality of the inferred knowledge-level
preference.

4.3.1 Reward Decomposition. Based on the above motivation, at
time step ¢, we define the k-step reward function by integrating
two different reward functions:

®)

R(st,ar) = Rseqir:t+ks lr:rk) + Riegirrkes Lrpak)s

where Rseq (-, -) and Ry 4 (-, ) measure the sequence-level and knowledge-

level rewards, respectively, taking as input the information of
the ground-truth subsequence i;.; ;1 and the recommended sub-
sequence i,.;, . Note that we consider a k-step measurement for
approximating the overall performance. Next we discuss how to
set both Rseq(:, ) and ng(-, -) for our task.

4.3.2  Sequence-level Reward. In sequence recommendation, a good
reward function should not only consider the performance at in-
dividual steps, but also need to measure the overall performance
in terms of a recommendation sequence. Inspired by the works in
the evaluation of machine translation [21], we borrow the metric
of BLEU for sequence recommendation. Formally, given actual in-
teraction subsequence i;.;,; and the recommended subsequence
i1+ we define the reward function as

M
. - 1
Rseq(is:raksir:t+k) = eXP(M Z log precm) )]

m=1
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where precy, is the modified precision and calculated as:

2 pm €irer T #Pmy itk )s #Pms L0 1k)

precm meei,ﬂk #(Pmy it:t+k)

where pp, is an m-gram subsequence of iy.; k., #(Pm, ip.p 1) is the
number of times that p,, appears in i;.;,, and M determines how
many m-gram precision-scores to use. As we can see, such a reward
function advocates the recommendation algorithm to generate more
consistent m-grams from the actual sequence. It naturally measures
the sequence-level performance for our task.

4.3.3 Knowledge-level Reward. In the second reward function, we
do not focus on the exact match with item IDs. Instead, we consider
measuring the quality of knowledge-level characteristics reflected
in the sequences. Given an actual and predicted subsequences,
namely i;.;, and i;.;,, we still use the simple average method
in Eq. 5 to aggregate the TransE embeddings of items to derive
subsequence-level knowledge representations, denoted by ¢;.; 1
and ¢;.;,k, respectively. These two knowledge-level representa-
tions reflect the user preference over item attributes or profiles.
To measure the difference between the two vectors, we adopt the
cosine similarity as the reward function:

AT
Crittk " Cpprk

(10)

Rieglrste aek) = T e T
We can flexibly replace the cosine function with other forms of sim-
ilarity measurements. We compute the reward by considering both
the sequence-level and knowledge-level match. To our knowledge,
such an idea is seldom considered for deriving the cost function or
reward function in sequential recommendation.

By plugging Eq. 9 and Eq. 10 into Eq. 8, we can derive the final
reward function. By providing these two kinds of reward signals,
we expect the RL algorithm to yield a better recommendation per-
formance.

4.4 Learning and Discussion

In our model, we leverage external knowledge graph (KG) to im-
prove the RL algorithm for sequential recommendation. A key point
lies in how to learn an effective knowledge-level state represen-
tation for sequential recommendation. For this purpose, we first
utilize the Monte Carlo algorithm to sample a set of truncated sub-
sequences to train MDP. Based on these subsequences, a pairwise
ranking mechanism is then proposed to learn the induction net-
work. The overall algorithm is given in Alg. 1. We next introduce
the training details.

4.4.1 Training with Truncated Policy Gradient. In our task, our
goal is to learn a stochastic policy 7 that maximizes the expected
cumulative reward J(©) for all uses. The derivative of J(©) can be
given below:

V@) =Ex > ] yimt g, Yarlsii6)

=y 7(ar|s¢; ©)

(11)

where y is the discount factor to balance the importance of the cur-
rent reward and future reward, and “©” represents all the involved
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Algorithm 1 Learning algorithm for KERL

Input: policy 7z, number of sample times L, reward function R, knowledge
graph G, and learning rate a.

1: Initialize ® « random values

2: Obtain KG embedding according to TransE

3: for each u in U do

4 fort=1tondo

5 Obtain h; and ¢; according to Eq. 4 and Eq. 5

6: vs, =h; ®c; ® MLP(c;)

7: for [/ =1to L do

8 Sample a k-step subsequence l(tll+ & according to Eq. 2
Vﬂ(ii”lst;@)

2(i)1s2:0)
Update @, of induction network with pairwise ranking
vs, =h; ®c; ® MLP(c;)

9: @(—@+0{Z;:f)/j7tRj

10:
11:

12: end for
13: end for
14: end for

15: return ©

parameters to learn. We employ a truncated policy gradient strat-

egy to learn the parameters. Specifically, for each state s;, KERL
hO)

simulates a truncated k-step subsequence i, ), according to pol-

+k

icy function Eq. 2. Given {0 the learning process is written as

t:t+k’
follows:

t+k
Vr(i;’ |s¢; ©
vo - ZY” (ltn )
71'(1 )|st®)

KERL then repeats this process L times to estimate a better value.

(12)

4.4.2  Training the Induction Network. An important component
of our model is the induction network (Eq. 6), which predicts the
future preference based on current preference. To train such a neu-
ral network, a straightforward method is to fit it with ground-truth
preference vector (i.e., computing the actual preference using Eq. 6)
using regression loss, e.g., Mean-Squared Error (MSE). However,
the KG information is likely to contain noise or irrelevant informa-
tion for the recommendation task. Besides, the supervision signal
for real-vector regression is sparse in our scenario, since only a
single ground-truth preference vector f;.; , . is available for a given
subsequence. To better learn the induction network, we propose a
pairwise ranking strategy to improve the training process.

Based on the simulated subsequences for state s;, we can derive
their corresponding knowledge representations using the method

in Eq. 6, denoted by f(t ; ko f(tzg o f(tLt) +k- By calculating their re-

ward values according Eq. 10, we can form pairwise comparisons as
additional constraints to improve the learning. Specifically, we first
utilize their reward values to construct the preference order over

D 4

L subsequences, given f,, ;. and f,. t)+ &> and then add a pairwise

AU

constramt to train the induction network, where MLP(f,., ;) >

MLP(ft;t+k)ikag(it:t+k’ it:H—k) > ng(it:tJrk’ it:t+k)f0r1 <L <
L.

4.4.3 Discussion. The major novelty of the KERL model lies in the
incorporation of future knowledge-based preference f;.; 1 (Eq. 6).
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Table 1: Statistics of datasets for experiments (a.v.l=average
sequence length).

Dataset  #interactions  #users #items #a.vl #entities #relations
Beauty 198,502 22,363 12,101 9.87 42,355 20
CD 472,265 17,052 35,118  23.69 151,484 27
Books 1,856,747 52,406 41,264 2843 313,956 49
LastFM 203,975 7,694 30,658  21.11 214,524 19

Such a factor has been missing in previous knowledge-aware rec-
ommendation models [11, 12, 28], which makes it difficult to cap-
ture the drift or evolvement of user interests. Although previous
RL-based recommendation models [30, 35, 37] force the model to
maximize the long-term reward, they either rely on the reward func-
tion or adopt a random exploration strategy. Therefore, a high-level,
informative exploration strategy has not been well studied by these
RL-based models. Furthermore, we utilize both sequence-level and
knowledge-level reward functions to enhance such an informative
exploration process.

With the learned KERL model, given a user and his/her inter-
action sequence, we can calculate the probability of an action for
some an item according to Eq. 2. Then, we rank the items accord-
ing to their probabilities, and select the top-N results as the final
recommendations.

5 EXPERIMENT

In this section, we evaluate our proposed models by comparing
with several state-of-the-art methods. We begin with introducing
the experimental setup, and then analyze the experimental results.

5.1 Experimental Setup

Dataset. We evaluate different recommendation algorithms over
four datasets, including three e-commerce recommendation datasets,
and a music recommendation dataset.

e Amazon!: Amazon [8] comprises a large corpus of reviews
and timestamps on various products. We adopt three cate-
gories of diverse sizes and sparsity levels, which are Books,
Beauty, and CD.

e LastFM?: LastFM [23] is a music listening dataset released
from Last.fm online music system. We take the subset of the
dataset where the timestamp is from Jan, 2015 to June, 2015.

For all datasets, we remove users and items with less than five
interaction records. In our work, we need to obtain the knowledge
graph information for items in each dataset. For the lastFM and
Book dataset, we use the KB4Rec dataset [12, 33] to link the items
with Freebase entities to obtain KB triples. For the rest Amazon
datasets, we use the same relations by following [30] as knowledge
information. The statistics of four datasets are shown in Table 1.

For each user, we sort her/his records according to the timestamp
to form the interaction sequence. Based on the sorted sequences,
for next-item recommendation task, we hold out the last item of
each sequence as the test data; for next-session recommendation
task, we hold out the items from the last session in the interaction

!http://jmcauley.ucsd.edu/data/amazon/
http://www.cp.jku.at/datasets/LEM-1b/
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Table 2: Performance comparison on sequential recommendation between the baselines and our model (all the values in the
table are percentage numbers with % omitted). The best performance in each row is in bold font, and the starred numbers
represent best baseline performance. The last column shows the absolute improvement of our results against the best baseline,
which is significant at p-value<0.05. We do not present results of Ripple and KGAT on session-based task as they are not

suitable for this task.

. Sequential-based Knowledge-based .
Task Dataset Evalua’Flon Models Models Hybrid Models Improvement
metric FPMC DREAM GRU4Rec | Ripple KGAT | GRUp KSR KERL
Beauty Hit-Ratio@10 30.6 32.1 39.4 42.2 44.0 49.2 51.0¥  54.1 3.1%
NDCG@10 18.1 23.3 29.5 214 27.6 32.8* 32.2 36.5 3.7%
cD Hit-Ratio@10 | 21.3 24.5 50.5 58.4 63.4 642 683" 73.7 5.4%
Next-item NDCG@10 11.6 15.6 32.9 37.6 41.7 40.6 45.0*  50.8 5.8%
recommendation Books Hit-Ratio@10 19.6 21.3 56.2 63.8 70.2 68.3 75.1%  80.0 4.9%
NDCG@10 11.0 20.9 38.5 42.8 45.8 43.1 524% 57.1 4.7%
LastFM Hit-Ratio@10 31.0 35.5 52.8 52.5 55.8 58.2 62.7%  64.2 1.5%
NDCG@10 19.7 22.6 40.7 38.2 42.1 44.1 48.1"  50.1 2.0%
Beauty Hit-Ratio@10 18.8 20.3 24.2 —- —- 43.2 45.9*  48.2 2.3%
NDCG@10 10.1 11.2 14.0 —- —- 28.0 29.3* 314 2.1%
cD Hit-Ratio@10 17.0 20.5 31.3 —- —- 545 572 605 3.3%
Next-session NDCG@10 8.71 10.2 16.7 —- —- 314 32.2%  36.8 4.6%
recommendation Books Hit-Ratio@10 15.5 18.9 28.9 —- —- 52.8 54.6* 58.2 3.6%
NDCG@10 7.94 11.3 17.8 —- —- 29.1 30.0"  35.2 5.2%
LastFM Hit-Ratio@10 19.1 20.2 22.0 —- —- 31.9 41.5% 441 2.6%
NDCG@10 11.0 11.4 12.7 —- —- 18.8 22.8°  25.0 2.2%

sequence as the test data, in which a day is considered as a session.
The rest data of the two tasks is treated as the training data, while
5% of data from testing sets are further randomly selected as the
validation sets. To accelerate the evaluation process, for each user
u, we randomly sample 100 negative items, and rank these items
with the ground-truth item.

Baselines. We adopt three types of baselines for comparison, in-
cluding sequential-based models, knowledge-based models, and
hybrid models. For sequential based models, we consider both shal-
low models and deep models:

e FPMC [22] is a shallow model that combines matrix factoriza-
tion and factorizes first-order Markov chains for sequential recom-
mendation.

e DREAM [31] leverages recurrent neural network to model the
dynamic representations of users and the sequential relationships
between items.

o GRU4Rec [9] is a session-based recommendation, which utilizes
GRU to capture users’ long-term sequential behaviors.

The knowledge-based models include:

o KGAT [28] explores the high-order connectivity with semantic
relations in collaborative knowledge graph for knowledge-aware
recommendation.

® Ripple [26] is an embedding-based method that models users’
potential interests along links in the knowledge graph for recom-
mendation.

The hybrid methods include:

e KSR [12] is a novel GRU-based sequential recommender by
integrating it with knowledge-enhanced KV-MNs.

e GRUF [10] is an extension of GRU4Rec that incorporates auxil-
iary features for recommendation. Similar to [12], we concatenate
the pre-trained BPR item vector and the KG embedding as the input
of GRU.

For GRU4Rec, KGAT, RippleNet, and KSR, we use the codes
released by their authors. The rest models are implemented in
PyTorch.

Evaluation Metrics. For each a user, a method will produce a
top-N recommendation list for evaluation. Following [12], we em-
ploy the commonly used Hit-Ratio@k and NDCG@k as evaluation
metrics. k is set to 10 in our experiments. For next-session rec-
ommendation task, we have multiple ground-truth items for each
user. We average the results of all the items as the final perfor-
mance. With paired t-test, performance differences are considered
statistically significant when the p-value is lower than 0.05.

Parameter Settings. We optimize all models with the Adam op-
timizer by setting the batch size as 1024. For BLEU metric, we
consider up to 3-grams. For baselines, we optimize each of them
according to the validation sets. For our model, the hidden layer
size of GRU and item embedding size are set to 64, and the KG
embedding size with TransE is set to 50. For the hyper-parameters,
the discount factor y is set to 0.9, the episode length k is set to 3 and
5 on next-item recommendation and next-session recommendation
task respectively.

5.2 Performance Comparison

We compare our KERL model against several competitive baseline
methods on both next-item and next-session recommendation task.
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Table 3: Performance comparison of KERL,, KERLj,,,
KERLy, r and KERL over four datasets. Best performance is
in bold font.

Task Dateset Metric KERLp,  KERLpyc KERLp,p KERL
Beauty | HHCRato@I0 [ 465 52.2 50.9 54.1
NDCG@10 | 31.0 34.2 33.2 36.5
oD Hit-Ratio@10 | 64.1 71.6 70.2 73.7
Next NDCG@10 | 40.1 48.8 48.2 50.8
tem | p | Hit-Ratio@10 | 747 78.1 77.1 80.0
NDCG@10 | 413 57.0 56.4 58.1
Hit-Ratio@10 | 57.3 61.4 59.8 63.7
LastEM | “\peG@i1o | 413 47.9 47.0 50.1
Beauty | Hit-Ratio@10 | 41.3 46.5 45.0 48.2
NDCG@10 | 245 30.2 29.7 314
D Hit-Ratio@10 | 54.2 57.5 56.1 60.5
Next NDCG@10 | 304 35.0 343 36.8
Session Books Hit-Ratio@10 | 51.9 56.3 55.2 58.2
NDCG@10 | 30.6 33.7 33.1 35.2
Hit-Ratio@10 | 32.3 421 408 43.1
LastftM | “\poceio | 175 22.6 21.8 24.0

We present the comparison results in Table 2. From this table, we
can observe that:

For sequential-based models, comparing with the shallow model
FPMC, the deep models DREAM and GRU4Rec obtain a better
performance on all evaluation metrics. The major reason is that
FPMC only captures very short dependency in sequences (i.e., one
step), while deep models can model a longer sequence context.
Besides, both DREAM and GRU4Rec adopt more powerful neural
architecture than the FPMC which adopts the matrix factorization.

By incorporating KG into recommender systems, the knowledge-
based methods perform better than sequential-based methods on
all evaluation metrics. As will be shown latter, this observation is
also consistent with our previous findings in Table 3 (i.e., KERL,
and KERLy perform better than KERLy,). Specially, based on graph
neural network, KGAT is able to model higher-order connectives
than other knowledge-based methods, and thus achieves a better
performance.

For hybrid models (i.e., knowledge+sequential), both GRUF and
KSR perform better than the above two classes of methods. It shows
that both sequence- and knowledge-level characteristics are useful
to consider for sequential recommendation. Specially, KSR adopts a
knowledge-enhanced key-value memory networks for tracing both
sequential and knowledge-aware user preference, and outperforms
GRUF that uses simple knowledge integration in most cases.

Finally, our proposed approach KERL achieves the best perfor-
mance among all the methods on four datasets. Although the base-
line KSR [12] has also utilized knowledge information for enhanc-
ing sequential recommendation, it cannot predict and model future
knowledge characteristics of user preference. The major novelty of
KERL is that it formalizes the sequential recommendation task in
a MDP setting. We incorporate knowledge information into both
state representations and reward functions. With such meaningful
extensions, our model is able to better utilize knowledge informa-
tion for sequential recommendation.

5.3 Ablation Study
KERL makes several important extensions to fuse KG information

into RL for sequential recommendation. In this section we conduct
ablation study experiments to analyze their impact.
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Figure 3: Performance curves of KERL and its two variants
with the varying iterations on CD dataset.

5.3.1 Analysis on Knowledge-Enhanced State Representation. In
this part we analyze the impact of fusing KG information into the
state for sequential recommendation. Recall that we have three rep-
resentations in Eq. 7, namely h; (Eq. 4), ¢; (Eq. 5) and f;.; . (Eq. 6).
Hence, we consider three variants for comparison by examining
the effect of each part for sequential recommendation, including:

e KERL}, using only the sequential representation hy;

e KERLp . using the the sequential representation h; and the
current knowledge representation c;;

o KERLy, s using the sequential representation h; and the
future knowledge representation f;.;, .

The results of KERL and its three variants on four datasets are
shown in Table 3. We can see that KERL;, performs worst on all
evaluation metrics over four datasets. It indicates the necessity of
fusing KG information into recommendation. Though incorporat-
ing future knowledge can improve the recommendation perfor-
mance (e.g., KERLy, ¢ performs better than KERLy,), KERLp, . still
outperforms KERLj,, ¢ on all evaluation metrics. Finally, by com-
bining the three parts, the complete model KERL outperforms its
three variations in term of all evaluation measures.

5.3.2  Analysis on Reward Function. In KERL, a hybrid reward func-
tion is introduced to guide the agent for constructing effective
recommendation, which considers the impact of both sequence-
and knowledge-level reward. In this section we analyze the effect
of each individual reward on the final performance. Specifically,
according to Eq. 8, we introduce two variants:

® KERLR,,, using only the sequence-level reward;
* KERLR,, using only the knowledge-level reward.

Figure 3 shows the test performance curves of KERL and its
two variants on CD dataset. Since similar conclusions can also be
drawn on other datasets, we omit these results due to space limit.
As we can see, after convergence, KERLRSW performs better than
KERLng on NDCG@10 metric, while KERLng shows a better
performance on Hit-Ratio@10 metric. Such a difference is likely
to be incurred by the nature of the two reward functions. The
sequence-level reward optimizes the BLEU loss, tending to rank
the correct items on higher positions, while the knowledge-level
reward optimizes a knowledge-based loss, tending to recall more
correct items. Combining their merits, the complete approach KERL
achieves a better performance with both reward functions.
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Figure 4: Performance comparison of two different learn-
ing strategies of KERL on next-item and next-session rec-
ommendation tasks.

5.3.3  Analysis on Learning Strategy for Induction Network. As shown
in Table 3, the future knowledge-based representation is important
to the final recommendation performance, which is derived using
the induction network (Eq. 6). Recall that KERL first pretrains the
induction network with the MSE loss, then pairwise ranking con-
straints are incorporated to improve the learning. In this part, we
analyze the impact of pairwise learning strategy on KERL. Specifi-
cally, we remove the pairwise ranking constraints for learning the
induction network, denoted by KERL_ppg. Figure 4 presents the
performance comparison with and without the pairwise learning
strategy. As we can see, KERL consistently outperforms KERL_pg
on four datasets with the Hit-Ratio@10 metric. It indicates the
effectiveness of the proposed learning strategy for our approach.

5.3.4  Analysis on the Subsequence Length. To train the induction
network, we also apply the k-step truncated learning strategy for
stimulating sample sequences in Section 4.4.2. Since KERL look
aheads k steps to generate sample sequences, we examine the im-
pact of the exploration length k on the final performance. Specifi-
cally we vary the value of k in the set k € {1,3,5,7,9}. We report
the test performance of KERL in terms of Hit-Ratio@10 against the
length k on the four datasets in Table 4. We have the following ob-
servations. First, as the length k increases, the test performance in
terms of Hit-Ratio@10 increases accordingly. The trends are similar
for four datasets. This observation demonstrates the effectiveness of
fusing estimated future KG information for sequential recommen-
dation. KERL obtains the best performance when k=3 on next-item
recommendation task and k=5 on next-session recommendation
task. It is intuitive that the latter task requires a longer context for

Table 4: The impact of k-step truncated learning strategy on
Hit-Ratio@ 10 metric on four datasets. Best performance is
in bold font.

Task Dateset | k=1 k=3 k=5 k=7 k=9
Beauty | 53.9 54.1 53.7 532 527

next-item CD 724 73.8 729 719 713
Books 789 80.0 794 781 775

LastFM | 63.3 64.7 635 622 617

Beauty | 44.7 46.0 48.2 468 46.1

next-session CD 56.0 58.2 60.5 59.1 58.7
Books | 543 558 58.2 573 56.8

LastFM | 389 404 43.1 423 41.7
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the interaction sequence of a user sampled from Book dataset

ThE .
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Figure 5: Case study on next-session recommendation task.
The first row is an interaction sequence (ground-truth) of
a user sampled from Book dataset. The rest two rows are
recommendation results of KERL_ and KERL respectively.
Items in dashed boxes represent the real ones that the user
has bought.

estimating future preference. Finally, the performance decreases
if we consider longer exploration length on two recommendation
tasks. A possible reason is a long exploration window is likely to
incorporate noisy information and thus affect the recommendation
performance.

6 QUALITATIVE ANALYSIS

In our model, a major novelty is that we characterize and predict
future knowledge-level preference for improving sequential recom-
mendation. Previous experiments have shown that it is effective to
improve the recommendation performance. In order to better un-
derstand why it is useful, we further construct a qualitative analysis
with a case study on Book dataset in Fig. 5.

Specially, we present a snapshot of the reading sequence for a
sample user. The interaction sequence is time-ordered, consisting
of five books. The first three books are related to the Finance topic
(i.e., “How to Fight for Finance”, “Make Big Money in Business” and
“Personalities of Money”), while the last two books are related to the
Web design topic (i.e., “How To Make Money Blogging” and “Web
Design For Beginner”). Based on this snapshot, the user is likely
to be thinking of developing a website focusing on the finance
topic. After inspecting into the entire reading history from the
original dataset, we have found that the user is also interested in
the Technology topic (not covered in Fig. 5 due to space limit).

For illustrating the usefulness of predicting the future prefer-
ence, we prepare a new variant of our model by removing future
knowledge-based preference f;.; , . from the state representation for
recommendation, denoted by KERL_, f Given the first two books, we
present three recommended books by both methods, respectively.
It is interesting to see that KERL_¢ has been “trapped” in user’s
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current preference (recommending finance books only), while KERL
is able to successfully capture such a preference drift by making
appropriate knowledge exploration (recommending both finance
and technology books).

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel knowledge-guided rein-
forcement learning model, called KERL, for fusing KG information
into a RL framework for sequential recommendation. Specifically,
we formalize the sequential recommendation task as a Markov De-
cision Process (MDP), and make three major technical extensions
in this framework, including state representation, reward function
and learning algorithm. A major novelty of our model is that KG
information has been effectively utilized for both exploration and
exploitation in the MDP framework. The empirical results show
that our model can significantly outperform the baselines on four
real-world datasets. We have also conducted detailed analysises on
KERL model to illustrate the effectiveness of our extensions.

To the best of our knowledge, it is the first time that knowledge
graph data has been explicitly discussed and utilized in RL-based
sequential recommenders, especially in the exploration process. Cur-
rently, our focus lies in the utilization of knowledge information in
the RL framework instead of knowledge representations. We adopt
existing KG embedding methods to learn knowledge representation
for items. As future work, we will consider how to adaptively learn
better knowledge representation for sequential recommendation in
the RL framework.
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