
Beyond the Attention: Distinguish the Discriminative and
Confusable Features For Fine-grained Image Classification

Xiruo Shi
shixiruo@bupt.edu.cn

College of Computer Science, Beijing
University of Posts and
Telecommunications

Beijing, China

Liutong Xu
xliutong@tseg.org

College of Computer Science, Beijing
University of Posts and
Telecommunications

Beijing, China

Pengfei Wang∗
wangpengfei@bupt.edu.cn

College of Computer Science, Beijing
University of Posts and
Telecommunications

Beijing, China

Yuanyuan Gao
gyy002005@163.com

Information Sciences Academy of
China Electronics Technology Group

Corporation
Beijing, China

Haifang Jian
jhf@semi.ac.cn

Institute of Semiconductors, Chinese
Academy of Sciences

Beijing, China

Wu Liu∗
liuwu1@jd.com

AI Research of JD.com
Beijing, China

ABSTRACT
Learning subtle discriminative features plays a significant role in
fine-grained image classification. Existing methods usually extract
the distinguishable parts through the attentionmodule for classifica-
tion. Although these learned distinguishable parts contain valuable
features that are beneficial for classification, part of irrelevant fea-
tures are also preserved, which may confuse the model to make a
correct classification, especially for the fine-grained tasks due to
their similarities. How to keep the discriminative features while
removing confusable features from the distinguishable parts is an
interesting yet changeling task. In this paper, we introduce a novel
classification approach, named Logical-based Feature Extraction
Model (LAFE for short) to address this issue. The main advantage
of LAFE lies in the fact that it can explicitly add the significance of
discriminative features and subtract the confusable features. Specif-
ically, LAFE utilizes the region attention modules and channel
attention modules to extract discriminative features and confusable
features respectively. Based on this, two novel loss functions are
designed to automatically induce attention over these features for
fine-grained image classification. Our approach demonstrates its
robustness, efficiency, and state-of-the-art performance on three
benchmark datasets.
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1 INTRODUCTION
Fine-grained image classification, also known as sub-category im-
age classification, is a very popular research topic in the fields of
computer vision and pattern recognition recently. The differences
between fine-grained image classification and ordinary image clas-
sification are that large intra-class variance and small inter-class
variance, as shown in Figure 1. Because the images of fine-grained
are generally similar, and distinguished by the subtle and local dif-
ferences which make fine-grained image classification tasks (e.g.,
bird species [31], dog species [12], car models [14] and FGVC-
Aircraft [23]) still difficult.

Deep learning networks have made good progress on many
tasks [6, 22, 27, 29, 36], due to the rapid development of deep learn-
ing networks [9, 15, 26, 30], the performance of fine-grained im-
age classification has been continuously improved in recent years.
Finding the distinguishable parts and learning the distinguishable
features through the convolutional neural network plays a key
role in fine-grained image classification. At present, there are two
main methods to find distinguishing parts: (1) Obtain distinguish-
able parts or target bounding boxes directly by manually labeled
information (annotation of bounding boxes on objects or parts),
which has the advantage of not using extra computing resources.
However, manually labeled information is expensive and difficult
to obtain. (2) Through weakly supervised learning to automatically
find distinguishable parts and extract distinguishable features [5? ].
In particular, the use of the attention module [10, 20] has greatly
helped weakly supervised learning. However, these methods ignore
the distinguishable parts that may have confusable features. For
example, a bird’s eyes are the distinguishable parts, but when using
the attention module to locate the bird’s eye parts, it is inevitable

Oral Session C2: Media Interpretation MM '20, October 12–16, 2020, Seattle, WA, USA

601

https://doi.org/10.1145/3394171.3413883
https://doi.org/10.1145/3394171.3413883
https://doi.org/10.1145/3394171.3413883
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3394171.3413883&domain=pdf&date_stamp=2020-10-12


Brewer Blackbird

Shiny Cowbird

Rusty Blackbird

discriminative features confusable features

Figure 1: Example of large intra-class variance and small
inter-class variance and the examples of discriminative fea-
tures and confusable features from CUB-200-2011 dataset.
We take the images in the circle as an example. The red cir-
cles are the distinguishable parts, which are what we want
to obtain the discriminative features, and the yellow circles
are the similar parts of the two images, which are the con-
fusable features we want to obtain.

that the feather parts around the eye will be obtained at the same
time. If other types of birds also have such feathers, the features
obtained in this way will include the confusing feature of feathers.

To solve this problem, in this paper, we divide the features of
the image into two categories: (1) Discriminative features, which
can better distinguish fine-grained images. (2) Confusable features
are features that confuse fine-grained image classification or unim-
portant features, as shown in Figure 1. We argue that the features
obtained after adding the discriminative features and subtracting
the confusable features are more beneficial to the classification task.
This operation brings two benefits: (1)“The stronger the stronger,
the weaker the weaker”, the features that are helpful for classifica-
tion will be further enhanced, and the features that are not helpful
for classification will be further weakened (2) “Reduce the confus-
able features”, we weaken easily confusable features to eliminate
the influence of the confusable features that exist in distinguishable
parts. We use squeeze and excitation operations in SENet [10] to
obtain discriminative features and confusable features. SENet [10]
adaptively recalibrates the characteristic response in terms of chan-
nels by explicitly modeling the interdependence between channels.
It can learn to use global information to selectively emphasize in-
formation features and useless features. Inspired by SENet [10],
this paper proposes to establish the relationship between different
regions of the image so that it can selectively emphasize the useful
and unwanted regions, the detailed method will be introduced in
section 3.2. We add channel attention modules and regional atten-
tion modules at different stages of the standard backbone network
to explore the relationships between different channels and differ-
ent regions. We use different attention modules to extract different

features. There are 4 different attention modules in each stage: (1)
discriminative regional attention module, (2) confusable regional
attention module, (3) discriminative channel attention module, and
(4) confusable channel attention module. We use the discriminative
loss to guide the discriminative regional attention modules and
discriminative channel attention modules to extract discriminative
region features and discriminative channel features. We use the
confusable loss to induce confusable regional attention modules
and confusable channel attention modules to extract confusable
region features and confusable channel features. The discriminative
features are obtained by adding the discriminative channel features
and the discriminative region features. The confusable features
are obtained by adding the confusable channel features and the
confusable region features. In order to further enhance the discrim-
inative features and confusable features, we fuse the same attribute
features at different stages. The final features used for classifica-
tion are obtained by adding the fused discriminative features and
subtracting the fused confusable features. Our contributions can
be summarized as follows:

1) To get better features for image classification, different from
the previous methods, this paper not only considers the
enhancement of distinguishable parts features, but divides
the features into the discriminative features and the con-
fusable features, and obtains the final features by adding
the discriminative features and subtracting the confusable
features. This operation can not only further enhance the
discriminative features, but also we can reduce the negative
impact of confusable features in the distinguishable parts on
classification.

2) The discriminative features of the same category should be
similar, and the confusable features do not have a good classi-
fication ability. Based on the above principles, we design two
loss functions to induce attention modules to learn discrim-
inative features and confusable features, respectively. The
attention modules explore the importance between different
channels and the importance between the image regions.
The fusion of features of different layers of CNN has a posi-
tive effect on the classification task, to further enhance the
classification features, we propose a feature fusion method
for fusing features at different network levels.

3) We conduct comprehensive experiments on three challeng-
ing datasets (CUB Birds, Stanford Cars, Aircraft), and the pro-
posed approach outperforms the state-of-the-art approaches
on both datasets.

2 RELATEDWORK
With the rapid development of deep networks, the emergence of
various networks (e.g. AlexNet [15], VGGNet [26], ResNet [9]) has
a positive impact on image classification. For fine-grained image
classification, the key task is to obtain features of distinguishable
parts for classification. For obtaining discriminative features, there
are currently two methods.

One is to use manual labeling information to directly locate
the distinguishable parts and then extract features [35, 37]. Zhang
et al. [39] proposed a network with mid-level part abstraction layers.
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This network is mainly composed of two sub-networks: a detection
sub-network and a classification sub-network. Relying on man-
ually labeled information is undoubtedly a simple and effective
method [17, 19, 39, 40] for locating distinguishable parts. However,
because it is difficult and expensive to obtain manual annotation
information, weakly supervised fine-grained image classification
methods are gaining more attention. At present, using weakly su-
pervised learning to automatically induce deep neural networks to
directly learn distinguishable features is called a one-stage learning
approach. Using weakly supervised learning to locate distinguish-
able regions first, then extract relevant features for classification is
called a two-stage learning method.

For one-stage learning methods [25, 38], Lin et al. [18] proposed
a new way of feature fusion. They proposed a bilinear model, which
uses two independent CNNs to calculate pairwise feature interac-
tions to capture local differences in images. Transfer learning can
also be used in various tasks [1, 3]. Cui et al. [3] explored the impact
of image resolution on recognition and coping methods for long-
tail data. They study transfer learning via fine-tuning from large
scale datasets to small scale datasets. Chen et al. [2] proposed a
“Destruction and Construction Learning” (DCL) method to enhance
the difficulty of fine-grained classification and exercise the classi-
fication model to acquire expert knowledge. These methods use
feature fusion or feature enhancement to induce neural networks
to extract more effective features.

The main method for two-stage learning is to first locate the
distinguishable regions and then extract the features of the distin-
guishable regions [5, 11, 33, 34]. Fu et al. [5] recurrently predicted
the location of one attention area and extracted the corresponding
features through a novel recursive attention convolutional neural
network(RACNN). Wang et al. [33] proposed a correlation-guided
discriminative learning model to fully mine and exploit the discrimi-
native potentials of correlations for weakly supervised fine-grained
image classification globally and locally. Hu and Qi proposed the
WS-DAN model [11] introduced the data augmentation method
into the task of fine-grained image classification.

At present, whether the distinguishable parts is obtained through
manual annotation or is obtained through the attention module, it
is may inevitable that the obtained distinguishable parts contains
confusable features. To solve this problem while further enhancing
distinguishable features, the method proposed in this paper not only
extracts features that are easy to classify (discriminative features)
but also the features that make classifications confusing (confusable
features). By adding the discriminative features and subtracting the
confusable features to get better classification features. Our model
is end-to-end training and does not require any additional manual
information except labels during the training process.

3 APPROACH
In this section, the model proposed in this paper is described in
detail, including the design of the fusion of different levels of fea-
tures (Sec. 3.1), the regional attention module (Sec. 3.2), and the
design of the loss functions that induce attention module to ex-
tract discriminative features and confusable features (Sec. 3.3). The
overall framework of the model is shown in Figure 2. Given input
images, we obtain their features at the third, fourth and fifth stages

of backbone network respectively, input these features into the
attention modules to extract discriminative features and confus-
able features, and then fuse the same attribute features of different
stages. The final features used for classification are obtained by
adding discriminative features subtracting confusable features.

3.1 Feature Fusion at Different Layers
This paper proves its effectiveness on ResNet-50 and ResNet-101
respectively. As we all know, the feature extraction of ResNet is
divided into 5 stages. Exploiting semantic features from different
layers of CNNs has been shown to be beneficial to many vision tasks.
We consider that too low-level features in convolutional neural net-
works are not abstract and not representative, top-level features lose
some details. Therefore, we choose features in the 3, 4, and 5 stages
for feature fusion. We send the features obtained in stages 3, 4 and
5 to the regional attention modules and channel attention modules
suggested in Section 3.2 to obtain the relationships between regions
and the relationships between channels. These attention modules
obtain the features of discriminative region features, confusable
region features, discriminative channel features and confusable
channel features in the 3,4 and 5 stages, respectively, expressed as
r_disi, r_coni, c_disi, c_coni, where 𝑖 ∈ (3, 4, 5) represents three
stages of 3, 4, 5 respectively.

The discriminative features are obtained by adding the discrim-
inative channel features and the discriminative region features.
Similarly, the confusable features are obtained by adding the con-
fusable channel features and the confusable region features. The
final features used for classification are the original features plus
the discriminative features minus the confusable features. The for-
mula is as follows:

dis_fi = r_disi + c_disi (1)

con_fi = r_coni + c_coni (2)

Fi = fi + dis_fi − con_fi (3)

where dis_fi represents discriminative features at 𝑖 stage, con_fi
represents confusable features at 𝑖 stage, fi represents the original
features that do not pass the attention modules at 𝑖 stage, Fi repre-
sents the features obtained by enhancing the discriminative features
and weakening the confusable features at 𝑖 stage, 𝑖 ∈ (3, 4, 5) .

We fuse features of the same attribute at different stages as
shown in the above Figure 2. Formally, let UL and UL−1 be the
feature maps at stage 𝐿 and 𝐿 − 1 (𝐿 ∈ (3, 4, 5)). First, the feature
dimension of UL−1 is converted to be consistent with UL through
the convolution operation, and then the size of the feature map is
consistent with that ofUL through the pooling layer. The procedure
can be summarized as:

U = 𝜎 (𝐵𝑁 (W1 (UL + 𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝜎 (W2UL−1))))) (4)

where U represents the features after fusion. 𝜎 represents the acti-
vation function, 𝐵𝑁 represents batch normalize, 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 represents
maximum pooling operation, W1 and W2 are the parameters that
need to be learned.
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Figure 2: Overview of our approach. Given two input images under the same label, our model extracts discriminative features
and confusable features through the attention modules at certain stages, and at the same time, we fuse the features of each
stage to obtain better classification features. The final features used for classification are obtained by adding discriminative
features subtracting confusable features. In the figure, discriminative loss is represented by Ldis, confusable loss is represented
by Lcon, and cls loss is represented by Lcls, which will be introduced in section 3.3. In the figure above, the yellow squares repre-
sent discriminative features, and the gray squares represent confusable features, and the green round symbols represent the
operations of adding discriminative features subtracting confusable features which used to achieve the purpose of enhancing
discriminative features and weakening confusable features. The upper right corner of the figure shows the module structure
of different stages of feature fusion, the orange square represents the features of the L-1 stage, the green square represents
the features of the L (L ∈ (3, 4, 5)) stage, and the blue square represents the fusion features.

3.2 Regional Attention
Inspired by SENet [10], we consider the relationships between
image regions. Similar to SENet [10], we also use squeeze and ex-
citation operations to establish the relationships between image
regions. SENet [10] represents the entire spatial features on a chan-
nel as a global feature through a two-dimensional global pooling
operation. In order to obtain all the channel features on each region,
we need to first resize the features, and then extract the global chan-
nel features through one-dimensional global pooling. The specific
details are described below.

Squeeze: Given an inputX ∈ 𝑅𝐶×𝑊 ×𝐻 , we first need to perform
a dimensional transformation on the input X and compress each
feature map into a one-dimensional vector X′ ∈ 𝑅𝐶×𝑊𝐻 . Then
exchange it with the channel dimension to make it X′ ∈ 𝑅𝑊𝐻×𝐶 .
Here we use one-dimensional average pooling as the squeeze oper-
ation to make it X′ ∈ 𝑅𝑊𝐻 , which is equivalent to dividing each
feature map into the𝑊 × 𝐻 region, each block integrates the fea-
tures of all channels.

z = 𝑝𝑜𝑜𝑙𝑖𝑛𝑔1𝑑 (X′) = 1
𝐶

∑
X′ (5)

where X′represents input X after resize.
Excitation:As with the SENet [10] method, two fully connected

layers are used to form a bottleneck structure to model the correla-
tions between regions, and output the same number of weights as
the input features, the output features are obtained by multiplying

the obtained weights with the input features. We first reduce the
feature dimensions to 1/7 of the input, and activate it through 𝑅𝑒𝐿𝑢
and then return to the original dimension through a fully connected
layer. As shown in Figure 3, using the idea of the squeeze-and-
excitation module in SENet [10], we consider both the relationships
between image channels and the relationships between regions.

s = 𝜎 (W2𝜎 (W1z)) (6)

where 𝜎 refers to the 𝑅𝑒𝐿𝑈 function, W2 ∈ 𝑅
𝑊𝐻
𝑟

×𝑊𝐻 and W1 ∈
𝑅𝑊𝐻×𝑊𝐻

𝑟 , 𝑟 is set to 7.

X̃ = 𝑟𝑒𝑠𝑖𝑧𝑒 (X′s) (7)

where X̃ ∈ 𝑅𝐶×𝑊 ×𝐻 represents the final output of region attention.

3.3 Loss Function
We believe that after the same feature extraction network, the key
channel features and key region features of image under the same
label should be similar, so the discriminative features of the images
under the same label should be similar. Based on this condition,
this paper makes the distance of discriminative features of images
of the same category is closer, shown as:

𝐿𝑑𝑖𝑠 = 𝑀𝐴𝐸 (𝐺𝐴𝑃 (dis_fm),𝐺𝐴𝑃 (dis_fn)) (8)
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Figure 3: The figure shows the flow of the Squeeze and Exci-
tation operation of the channels and the regions. The left is
used to extract the relationships between channels, and the
right is used to extract the relationships between regions.

where dis_fm and dis_fn respectively represent the two discrimi-
native features after fusion under the same label, 𝐺𝐴𝑃 represents
global average pooling,𝑀𝐴𝐸 represents mean absolute deviation.

Regarding confusable features, this paper believes that such
features are background features or features that easily confuse
classification, that is, confusable features are not distinguishable or
have a negative impact on fine-grained image classification tasks.
Classifiers cannot accurately classify confusable features into a
certain correct category but are randomly assigned to all categories.
Based on this view, we design the loss function as follows as:

𝐿𝑐𝑜𝑛 = 𝑀𝐴𝐸 (𝐹𝐶 (𝐺𝐴𝑃 (con_fn)),𝑇 ) (9)

where con_fn represents the confusable features after fusion, 𝐺𝐴𝑃
represents global average pooling, 𝐹𝐶 represents a fully connected
layer, 𝑇 is a vector with a value of 1 for each dimension, and its
dimension is the number of categories,𝑀𝐴𝐸 represents mean ab-
solute deviation.

We send the final features to the classifier for classification, and
use cross-entropy as the loss function to classify the loss.

𝐿𝑐𝑙𝑠 = −
∑

𝑙 · 𝑙𝑜𝑔[𝐶 (𝐺𝐴𝑃 (F5)))] (10)

where𝐶 represents a trainable classifier for final classification,𝐺𝐴𝑃
represents global average pooling, 𝑙 represents image labels, and
F5 represents the final features used for classification, that is the
features of the fifth stage after fusion.

In our framework, we train the network in an end-to-endmanner,
specifically, we want to minimize the following objective:

𝐿 = 𝐿𝑐𝑙𝑠 + 𝐿𝑑𝑖𝑠 + 𝐿𝑐𝑜𝑛 (11)

4 EXPERIMENTS
In this section, we present performance evaluations and analysis
of our proposed method on three publicly available fine-grained
classification datasets, and we explore the contribution of each
proposed module.

Table 1: Comparison with state-of-the-art methods on CUB-
200-2011 dataset

Methods Anno. 1-Stage Accuracy

DeepLAC [17] ✓ ✓ 80.3
NAC [25] × ✓ 81.0
Part-RCNN [40] ✓ × 81.6
PA-CNN [13] ✓ × 82.8
SENet-50 [10] × ✓ 83.0
B-CNN [18] × × 84.1
FCAN [19] ✓ ✓ 84.3
Kernel-Pooling [4] × ✓ 84.7
SPDA-CNN [39] ✓ ✓ 85.1
RA-CNN [5] × × 85.3
DT-RAM [16] × × 86.0
MAMC-CNN [28] × ✓ 86.2
DFB-CNN [32] × ✓ 87.4
Cross-X [21] × ✓ 87.7
DCL [2] × ✓ 87.8
CIN [7] × ✓ 88.1
LAFE(ResNet-50) × ✓ 87.6
LAFE(ResNet-101) × ✓ 88.1

Table 2: Comparison with state-of-the-art methods on Stan-
ford Cars dataset

Methods Anno. 1-Stage Accuracy

DVAN [24] × × 87.1
FCAN [19] ✓ ✓ 89.1
SENet-50 [10] × ✓ 91.6
Kernel-Pooling [4] × ✓ 92.4
RA-CNN [5] × × 92.5
MAMC-CNN [28] × ✓ 93.0
DT-RAM [16] × × 93.1
DFB-CNN [32] × ✓ 93.8
WS-DAN [11] × × 94.5
DCL [2] × ✓ 94.5
CIN [7] × ✓ 94.5
Cross-X [21] × ✓ 94.6
LAFE(ResNet-50) × ✓ 94.8
LAFE(ResNet-101) × ✓ 94.9

4.1 Datasets and Baselines
To evaluate the effectiveness of our proposed model, we performed
experiments on three broad and competitive datasets: Caltech-
UCSD Birds (CUB-200-2011) [31], Stanford Cars [14], and FGVC-
Aircraft [23]. Caltech-UCSD Birds contains 11,788 images of 200
types of birds, 5,994 for training and 5,794 for testing. Stanford
Cars contains 16,185 images of 196 classes of cars. The data is split
into 8,144 training images and 8,041 testing images. FGVC-Aircraft
contains 10,000 images of 100 types of aircraft, 6,667 for training
and 3,333 for testing. We compare with the following baselines,
due to their state-of-the-art results. All the baselines are listed as
follows:

Oral Session C2: Media Interpretation MM '20, October 12–16, 2020, Seattle, WA, USA

605



Table 3: Comparison with state-of-the-art methods on
FGVC-Aircraft dataset

Methods Anno. 1-Stage Accuracy

B-CNN [18] × × 84.1
Kernel-Pooling [4] × ✓ 85.7
RA-CNN [5] × × 88.2
SENet-50 [10] × ✓ 90.6
DFB-CNN [32] × ✓ 92.0
Cross-X [21] × ✓ 92.6
CIN [7] × ✓ 92.8
WS-DAN [11] × × 93.0
DCL [2] × ✓ 93.0
LAFE(ResNet-50) × ✓ 93.3
LAFE(ResNet-101) × ✓ 93.6

• Part-RCNN [40]: extends R-CNN [8] based framework by
part annotations.

• PA-CNN [13]: part alignment-based method generates parts
by using co-segmentation and alignment.

• NAC [25]: neural activation constellations find parts by com-
puting neural activation patterns.

• DVAN [24]: a weakly-supervised iterative scheme, which
shifts its center of attention to increasingly discriminative
regions as it progresses, by alternating stages of classification
and introspection.

• FCAN [19]: fully convolutional attention network adaptively
selects multiple task-driven visual attention by reinforce-
ment learning.

• DeepLAC [17]: deep localization, alignment and classifica-
tion proposes to use a pose-aligned part image for classifica-
tion.

• MAMC [28]: applies the multi-attention multi-class con-
straint in a metric learning framework, a novel attention-
based convolutional neural network which regulates multi-
ple object parts among different input images.

• RACNN [5]: recursively learns discriminative region atten-
tion and region-based feature representation at multiple
scales in a mutually reinforced way.

• B-CNN [18]: uses two separate feature extractors to capture
pairwise feature interactions for classification.

• DT-RAM [16]: recurrent visual attention model that selects
a sequence of regions through a dynamic continue/stop gat-
ing mechanism.

• SPDA-CNN [39]: semantic part detection and abstraction
proposes to generate part candidates and extract features by
detection/classification networks.

• DFB-CNN [39]: discriminant filter bankmethod for learning
convolutional filter banks that capture specific class discrim-
inant patches.

• WS-DAN [11]: proposes weakly supervised data augmenta-
tion network to explore the potential of data augmentation
to improve the performance of fine-grained image classifica-
tion.

• Cross-X [21]: a simple yet effective approach that exploits
the relationships between different images and between dif-
ferent network layers for robust multi-scale feature learning.

• DCL [2]: a novel “Destruction and Construction Learning”
method to enhance the difficulty of finegrained recognition
and exercise the classification model to acquire expert knowl-
edge.

• CIN [7]: proposes a channel interaction network, which
models the channel-wise interplay both within an image and
across images.

4.2 Implementation Details
We evaluate our proposed method on a widely used backbone net-
work ResNet-50 and ResNet-101. The ResNet-50 and ResNet-101 are
pre-trained on the ImageNet dataset. The input images are resized
to a fixed size of 512 × 512 and randomly cropped to 448 × 448. We
apply random rotation and random horizontal flips to data aug-
mentation. In the third, fourth, and fifth stages, we add additional
attention modules, as shown in section 3.2, to obtain the image
channels and regions that have a positive effect on classification
and the image channels and regions that play a negative role in clas-
sification. The former is called discriminative channel features and
discriminative region features, and the latter is called confusable
channel features and confusable region features. The discrimina-
tive channel features and the discriminative region features are
combined to obtain the discriminative features, and the confusable
channel features and the confusable region features are combined
to obtain the confusable features. The shapes of the output feature
map are 56 × 56 × 512, 28 × 28 × 1024, 7 × 7 × 2048. The features of
these three stages are fused according to the method in section 3.1
to obtain the final features for classification. No part or bounding
box annotations are used during training.

We train the models using Stochastic Gradient Descent (SGD)
with the momentum of 0.9, epoch number of 200, weight decay of
0.0005, and a mini-batch size of 16. In order to narrow the distance
of discriminative features under the same label, we need to make
the images under the same label appear in pairs during the training
process, so we customize the sampling method so that the two
adjacent images in each batch have the same label. The initial
learning rate is set to 0.0015, with exponential decay of 0.1 after
every 40 epochs.

4.3 Comparison with State-of-the-Art
Results on CUB-Birds: The classification results for CUB birds
are presented in Table 1. Compared with previous methods, our
method has better performance. For the two-stage method, Part-
RCNN [40],PA-CNN [13], B-CNN [18], RA-CNN [5], andDT-CNN [16]
achieve 81.6%,82.8%, 84.1%, 85.3%, and 86.0% accuracy respectively
on the CUB-200-2011 dataset. Compared with them, the accuracy
of our model is 6.5%, 5.3%, 4.0%, 2.8%, 2.1% higher than them. Two-
stage learning is not end-to-end training, it is more difficult than
one-stage training. For the one-stage model, researchers have pro-
posed various novel approaches to study from various aspects. The
kernel pool reaches 84.7%, and MAMC-CNN [28] which learns
multiple feature maps by embedding OSME blocks into the metric
learning framework, its accuracy reaches 86.2%. SPDA-CNN [39]
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Figure 4: Visual feature maps. The first column is the origi-
nal images, and the second column is the feature maps for
classification which is obtained by the feature maps of the
last convolutional layer of ResNet-50 plus discriminative
features minus confusable features. The third column is the
discriminative features obtained by the fifth stage ofResNet-
50. The fourth column is the confusable features obtained by
the fifth stage of ResNet-50.

proposed network has two sub-networks: one for detection and
one for recognition. It has an accuracy of 85.1% on CUB-200-2011
dataset, but it uses manual annotation information. DFB-CNN [32]
uses the discriminant filter bank method for learning convolutional
filter banks that capture specific class discriminant patches, and its
accuracy rate has reached 87.4%, but as can be seen from Table 1, the
accuracy of our model LAFE is still better than them. The accuracy
of LAFE is 0.4% higher than the recently proposed Cross-X [21]
model. Compared with DCL [2], which proposes a novel “Destruc-
tion and Construction Learning” to acquire expert knowledge, the
accuracy of LAFE is 0.3% higher than it. From the results on the
Table 1, compared with CIN [7], which models the channel-wise
interplay both within an image and across images. The accuracy of
LAFE is equal to it on the CUB-200-2011 dataset, but the accuracy
rate of LAFE on both other datasets exceeds CIN. We consider that
it may be due to the small target of the CUB-200-2011 dataset. Com-
pared with the large target on the Stanford Cars and FGVC-Aircraft
datasets, LAFE would be more difficult to capture more detailed
parts on the small target. This is what we need to improve in the
future.

Results on Stanford Cars: The classification results for Stan-
ford Cars are presented in Table 2. Our model achieves state-of-
the-art performance on this dataset. For the two-stage models
DVAN [24], RA-CNN [5], DT-RAM [16], and WS-DAN [11], their

Table 4: An ablation study of proposed methods for recog-
nition accuracy on three different datasets. The first line
shows the experimental results of LAFE on three datasets.
- Region Attention represents the model after removing the
regional attention module on the LAFE network. - Feature
Fusion represents the model after removing feature fusion
at different stages on LAFE. - Feature Loss Function repre-
sents the removal of the discriminative features loss and the
confusable features loss proposed in Section 3.3. - Confus-
able Loss Function represents the experimental results af-
ter only removing the confusable features loss function on
LAFE, these experimental results better prove the effective-
ness of the confusable features loss function. The last line
shows the experimental results of the backbone network
resnet-50 on three datasets.

Methods CUB CAR AIR

LAFE 87.6 94.8 93.2
- Region Attention 87.2 94.6 92.9
- Feature Fusion 85.5 94.1 92.4
- Feature Loss Function 86.8 94.2 92.7
- Confusable Loss Function 87.0 94.5 92.9
resnet-50 84.5 92.9 90.3

accuracy rates are 87.1%, 92.5%, 93.1%, and 94.5%, respectively. Com-
pared with them, the accuracy of our model is 7.8%, 2.4%, 1.8%, 0.4%
higher than them. WS-DAN [11] advocates focusing on other re-
gions that are not critical and they explore the potential of data
augmentation. They generate attention maps by performing weakly
supervised learning on each training image, and enhance the im-
ages guided by these attention maps, including attention cropping
and attention dropping. For the comparison of the one-stage mod-
els, LAFE still achieved the best results. Similarly, the accuracy of
LAFE is 1.1%, 0.4%, and 0.3% higher than DFB-CNN, DCL [2], and
Cross-X [21] in recent years. Cross-X [21] also uses squeeze and
excitation operations, it exploits the relationships between different
images and between different network layers for robust multi-scale
feature learning. Compared with the recently proposed CIN [7],
LAFE still achieves excellent performance. The accuracy of LAFE
is 0.4% higher than that of CIN.

Results on FGVC-Aircraft: The classification results for FGVC-
Aircraft are presented in Table 3. Our model achieves state-of-
the-art performance on this dataset. For the two-stage models,
B-CNN [18], RA-CNN [5], WS-DAN [11], their accuracy rates are
84.1%, 88.2%, 93.0%, respectively. Compared with them, the accu-
racy of our model is 9.5%, 5.4%, 0.6% higher than them. Similarly,
compared to the one-stage model, the accuracy of LAFE is still
better than them. Compared with DCL [2] and Cross-X [21], the
accuracy of LAFE is 0.6% and 1.0% higher than them, respectively.
Compared with CIN, the accuracy of LAFE is 0.8% higher than the
accuracy of CIN on the FGVC-Aircraft dataset.
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4.4 Ablation Studies
We performed ablation studies to understand the different compo-
nents in our proposed model. We designed different runs in the
three datasets on ResNet-50 and reported the results in Table 4.

The Effect of Region Attention: Experiments show that us-
ing the region attention module is more effective than not using
the module. After removing the regional attention modules, the
accuracy of the CUB-200-2011 dataset, the Stanford dogs dataset,
and the FGVC-Aircraft dataset decreased by 0.4%, 0.2%, and 0.3%,
respectively, which indicates that the introduction of the region
attention module proposed in 3.2 has played a positive role in the
final classification.

The Effect of Feature Fusion: Similarly, the fusion of features
at different stages also has a positive impact on the final classifica-
tion. According to the data in Table 4, after removing the Feature
Fusion operation, the accuracy of the CUB-200-2011 dataset, the
Stanford dogs dataset, and the FGVC-Aircraft dataset decreased by
2.1%, 0.7%, and 0.8%, respectively. Feature Fusion operation has a
greater impact on the CUB-200-2011 dataset. Because the CUB-200-
2011 dataset has more classification categories, and less training
data and smaller classification targets, the low-level convolution
retains detailed information, so compared to other datasets, feature
fusion at different stages has a greater impact on the CUB-200-2011
dataset.

The Effect of Feature Loss Function: In order to obtain the
discriminative features and confusable features, the two loss func-
tions proposed have played a positive role in LAFE. We induce
channel attention modules and regional attention modules training
by reducing the distance of discriminative features under the same
label. Similarly, we use a classifier to map confusable features to a
vector whose dimension is the number of categories with a value
of 1 to induce channel attention modules and regional attention
modules training. As shown in Table 4, after deleting these two
loss functions, the accuracy of the three datasets has decreased
significantly. The rates decreased by 0.8%, 0.6%, and 0.5%, respec-
tively. As shown in Figure 5, the second column is the final feature
map for classification. They add the discriminative features of the
third column and subtract the confusable features of the fourth col-
umn. Discriminative features and confusable features are obtained
through attention modules that explore relationships between chan-
nels and relationships between regions, respectively.

The Effect of Confusable Features Loss Function: In order
to highlight the role of confusable features, we also design an exper-
iment to remove the loss function of confusable features. As shown
in Table 4, after removing the loss function of confusable features,
the accuracy of the three datasets decreased by 0.6%, 0.3%, and
0.3%, respectively. These results further illustrate the significance
of weakening the confusable features. Our confusable features loss
function induce the attention module to learn the confusable fea-
tures, and weakening the confusable features plays a positive role
in final classification.

4.5 Visualization
Figure 5 shows the activation maps of 6 images from 3 datasets.
We send the feature maps obtained by the last convolution of the
backbone network to different attention modules to obtain discrim-
inative features and confusable features. The visualization images
of discriminative features and the visualization images of confus-
able features are represented by the third and fourth columns in
Figure 5, respectively. It can be observed that the discriminative
features maps and confusable features maps some have different
attention parts on the image. The focus area of the discriminative
features maps are mainly concentrated around the object or the
object’s key area, the attention area of the confusable features maps
are relatively small and mainly focuses on the area details of the
object. For example, the discriminative features maps of the bird
in the first line focus on the bird’s wings and bird’s paws, while
the confusable features maps focus on the abdomen of birds. How-
ever, some discriminative features and confusable features have
the same attention parts, which means that the parts have both
discriminative features and confusable features. For example, the
area of the bird’s neck in the second row contains both discrimi-
native features and confusable features. The results show that the
features obtained by locating the distinguishable parts only through
the attention module are likely to contain confusable features. We
try to eliminate such effects by subtracting the learned confusable
features. We fuse discriminative features and confusable features to
get the final classification features, as shown in the second column
of Figure 5, that is, we add the discriminative features then subtract
the confusable features to enhance the features that have a positive
impact on the classification and weaken the features that have a
negative impact on the classification.

5 CONCLUSION
Our method uses the squeeze-and-excitation module to learn the
relationship between channels and the relationship between regions
to obtain discriminative features and confusable features, and uses
the feature fusion module to fuse features at different stages to
enhance features, the final features used for classification is the
original features of the last stage plus discriminative features minus
confusable features. The confusable features of the images under the
same label should be the same, and the confusable features are not
important or easily confuse the final classification. Based on these
two principles, we design two loss functions to reduce the distance
between discriminative features under the same label and map
confusable features to a vector with a value of 1 for each dimension,
and its dimension is the number of categories. Our model is proven
to be effective on three public datasets, and ablation experiments
further prove the effectiveness of different models.
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