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ABSTRACT

Next basket recommendation aims to infer a set of items that a user
will purchase at the next visit by considering a sequence of baskets
he/she has purchased previously. This task has drawn increasing
attention from both the academic and industrial communities. The
existing solutions mainly focus on sequential modeling over their
historical interactions. However, due to the diversity and random-
ness of users’ behaviors, not all these baskets are relevant to help
identify the user’s next move. It is necessary to denoise the baskets
and extract credibly relevant items to enhance recommendation
performance. Unfortunately, this dimension is usually overlooked
in the current literature.

To this end, in this paper, we propose a Contrastive Learning
Model (namedCLEA) to automatically extract items relevant to the
target item for next basket recommendation. Specifically, empow-
ered by Gumbel Softmax, we devise a denoising generator to adap-
tively identify whether each item in a historical basket is relevant
to the target item or not. With this process, we can obtain a positive
sub-basket and a negative sub-basket for each basket over each user.
Then, we derive the representation of each sub-basket based on
its constituent items through a GRU-based context encoder, which
expresses either relevant preference or irrelevant noises regarding
the target item. After that, a novel two-stage anchor-guided con-
trastive learning process is then designed to simultaneously guide
this relevance learning without requiring any item-level relevance
supervision. To the best of our knowledge, this is the first work
of performing item-level denoising for a basket in an end-to-end
fashion for next basket recommendation. Extensive experiments
are conducted over four real-world datasets with diverse character-
istics. The results demonstrate that our proposed CLEA achieves
significantly better recommendation performance than the existing
state-of-the-art alternatives. Moreover, further analysis also shows
that CLEA can successfully discover the real relevant items towards
the recommendation decision.
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Figure 1: A motivating example to illustrate the necessary

of making data denoising for next basket recommendation.

Given the previous two baskets (B=1 and B=2), we aim to

recommend items that user will buy in the next basket (i.e.,

B=3).
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1 INTRODUCTION

Next basket recommendation is a fundamental task for E-Commerce
platforms [13]. Generally, given a sequence of historical baskets for
a user, where each basket contains a collection of items, we would
like to recommend a shopping list that the user may purchase
next. In this specific scenario, intra-basket and inter-basket item
interactions are important factors need to be considered, as items
a user purchase in the future may usually depend strongly on
the items he/she has interacted with in the past. However, due
to the diversity and randomness of user behaviors, the baskets
often contain many items that are irrelevant to his/her next choice,
which tends to overwhelm the useful signals from a few truly
relevant ones. Therefore, a good recommender should be able to
extract these items relevant to the target item to infer a correct
recommendation [27].

Though promising, we argue that it is non-trivial to perform
denoising due to the following two aspects: 1) Since there is no
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direct mechanism to collect item-level relevance information in
basket recommendation scenarios, it is difficult to train an effective
denoising model to enhance user understanding without recruiting
any item-level supervision signal. 2) The denoising process should
be context-aware such that the relevance of a historical item should
be dependent on the target one. In addition, the randomness of user
behaviors may also bring some items irrelevant to the task, which
certainly aggravates the relevance learning process.

To explain this, we give an illustrative example in Figure 1. Given
the previous two baskets (B=1 and B=2), we aim to recommend
items that this user will buy in the next basket (i.e., B=3). It is
interesting to see that item phone in the second basket should be
neglected as it has no obvious relation with all items in the target
basket. In addition, though football shoe and football shirt indicate
strong connections with football, it turns to distract the preference
learning towards item grape.

To distill the credible item relevance for a good recommendation,
many research efforts have been devoted to sequential pattern min-
ing technique [6]. Despite effectiveness, these techniques usually
lack context-aware modeling and suffer from producing optimal re-
sults concerning the trade-offs between support and confidence [28].
Recently, with the prosperity of deep neural network, various ap-
proaches are adopted to composite the relevant signals from the
historical interactions for recommendation [16, 29]. Though these
methods have provided strong performance, a deficiency is that
existing methods mostly transform the whole sequence into a fixed-
length vector, which may introduce too much noise into the model
learning process. Recently, some attention-based approaches are
proposed [11, 27] to automatically assign different weights on items
in terms of their relevance. However, these methods still cannot
explicitly utilize the credible sequential patterns, thus the perfor-
mance and interpretation are limited.

In light of these challenges mentioned above, we propose a
Contrastive Learning Model (named CLEA) to automatically ex-
tract the items relevant to the target item for next basket recom-
mendation. The proposed CLEA consists of a sub-basket sequence
generator, a context encoder, and a contrastive learning process
for relevance modeling. The sequence generator works as a denois-
ing generator (denoted as G) with a Gumbel Softmax to explicitly
extract the items relevant to the target item from each basket. In
this sense, the denoising generator splits each basket into two
disjoint sub-baskets: positive sub-basket and negative sub-basket.
While a positive sub-basket contains all relevant items inside the
corresponding basket, the negative sub-basket contains the other
irrelevant ones instead. After this item-level denoising, we can form
the two sub-basket sequences based on the output of the denoising
generator. For each sub-basket sequence, we then derive the repre-
sentation of each sub-basket based on its constituent items through
a GRU-based context encoder, which expresses either relevant pref-
erence or irrelevant noises regarding the target item. Owing to
the benefit of end-to-end training, our CLEA can automatically
select items relevant to the target item and outperform the exist-
ing state-of-the-art recommendation models based on a two-stage
anchor-guided contrastive learning process for model optimization.

To summarize, the contributions of this paper are listed as fol-
lows:

• We formulate a new task of performing denoising to enhance
next basket recommendation. To the best of our knowledge,
this is the first work of performing item-level denoising for
a basket in an end-to-end fashion for this task.
• We propose a novel anchor-guided contrastive learning pro-
cess to perform basket denoising without requiring any item-
level relevance supervision, a two-stage learning approach
to guarantee the effectiveness and efficiency of the learning
procedure.
• Extensive experimental results over four real-world datasets
show that our proposed CLEA can consistently outperform
state-of-the-art baselines in terms of all Precision, Recall, F1,
and NDCG metrics.

2 RELATEDWORK

In this section, we briefly review two research areas related to our
work, which are next basket recommendation and attention-based
recommendation.

2.1 Next Basket Recommendation

Next basket recommendation is an important component for trans-
action data analysis. In previous decades, pattern mining-based
methods are widely analyzed to mine insightful associations from
transaction data [1]. This technique is known as association rule [2]
and sequential pattern [31]. Manymodels are designed to mine qual-
ified sequential patterns for recommendation. For example, Yap et
al. [30] introduced a novel Competence Score measure to exploit
user-specific sequential patterns for personalized recommendation.
Wang et al. [28] proposed to address different types of noises as
well as scalable algorithms developed for efficiently mining sequen-
tial patterns. Although simple and effective, these approaches can
only provide recommendation based on the mined patterns, most
of which are often noise once mining a large data set.

The MC-based methods are another line to model sequential
properties.Previous work usually analyzes the impacts of single-
step sequential behaviors. For example, Rendle et al. [19] designed
a personalized Markov chain to provide recommendations. Based
on this, Wang et al. [25] utilized representation learning metrics to
model complex interactions between users and items.

Recently, the prosperous deep learning technology has begun
to be applied in next basket recommendation task [3], which is
used to fully model multi-step sequential behaviors. For example,
Yu et al. [33] introduced an RNN-based approach to capture both
user interests and global sequential features among baskets. Le et
al. [14] incorporated information on pairwise correlations among
items to enhance the representation of individual baskets. Wang
et al. [27] built an attentive context to weight items with different
relevance for recommendation. Besides, Leilei et al. [23] proposed
a co-transformer multi-level representation method to capture the
correlations of items and sets for sets prediction. Hu et al. [8, 9] de-
signed a novel repeated purchase component on sequential models,
and obtained considerable performance.

Though effective, these approaches fail to consider only the truly
relevant items for the next choice, which complicates the preference
learning and limits the performance and interpretability.
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Figure 2: The network structure of the proposed CLEA.

2.2 Attention-based Recommendation

The attention mechanism allows a model to focus on the more
informative parts of the target with different weights. Due to its
promising performance in sequence learning, various models are
designed for the sequential recommendation [15, 24].

For example, Ying et al. [32]proposed a two-layer hierarchical
attention network to take both user-item and item-item interactions
into account for sequential recommendation. SASRec [11] intro-
duced a novel self-attention based sequential approach to model the
entire user sequence, and adaptively considered consumed items
for prediction. BERT4Rec [22] used a bidirectional self-attention
network to model user sequential behaviors.

Different from our model, these attention-based models assign
weights to softly weaken the adverse effects of the irrelevant items.
However, this noisy information can still dilute the discriminative
signals of the truly relevant ones. It is necessary to directly remove
these irrelevant items for a clear recommendation. Recently, Zhang
et al. [35] proposed a hierarchical reinforcement learning algorithm
to automatically filter out the noisy courses. Different from their
work, in this paper we address the denoising problem in a more
complex basket scenario with a novel anchor-guided contrastive
learning model.

3 OUR APPROACH

In this section, we first introduce the problem formulation of per-
forming denoising for next basket recommendation. We then de-
scribe the proposed CLEA model in detail.

3.1 Problem Formulation

Without losing generality, we letU = {𝑢1, 𝑢2, · · · , 𝑢 |𝑈 |} denote all
users and I = {𝑖1, 𝑖2, · · · , 𝑖 |𝐼 |} denote all items, where |U| and |I |
represent the total number of unique users and items respectively.

For each user 𝑢 ∈ U, we use B𝑢 = {𝑏1𝑢 , 𝑏2𝑢 , · · · , 𝑏𝑛𝑢 } to denote the
recent purchase history of size 𝑛, where 𝑏𝑡𝑢 ∈ I represents 𝑡-th bas-
ket containing the items purchased by the user at that time. Our aim
is to extract a sub-basket sequence B𝑢,𝑖𝑐 = {𝑏1

𝑢,𝑖𝑐
, 𝑏2

𝑢,𝑖𝑐
, · · · , 𝑏𝑛

𝑢,𝑖𝑐
}

from B𝑢 , where 𝑏𝑡𝑢,𝑖𝑐 contains only the relevant items in 𝑏𝑡𝑢 w.r.t.
the target item 𝑖𝑐 (i.e., 𝑏𝑡𝑢,𝑖𝑐 ⊆ 𝑏

𝑡
𝑢 ), and precisely infer the likelihood

that user 𝑢 will purchase 𝑖𝑐 at next visit based on B𝑢,𝑖𝑐 .
For simplicity, we describe the technical details of CLEA for a

single user 𝑢, and it is straightforward to extend the formulas to a
set of users. Hence, we drop subscript 𝑢 in the notations for concise
presentation.

3.2 Denoising Generator

The whole architecture of CLEA is illustrated in Figure 2. Given a
basket 𝑏𝑡 and a target item 𝑖𝑐 , we aim to design a denoising genera-
tor to automatically identify the items inside basket 𝑏𝑡 that carry
informative signals towards the user’s preference over item 𝑖𝑐 . In-
tuitively, the denoising generator can be considered as a binary
classifier 𝑦 𝑗,𝑐 = G(𝑖 𝑗 , 𝑖𝑐 ) to decide whether item 𝑖 𝑗 ∈ 𝑏𝑡 is relevant
to item 𝑖𝑐 . When 𝑦 𝑗,𝑐=1, it means that 𝑖 𝑗 is relevant to 𝑖𝑐 . In con-
trast, 𝑦 𝑗,𝑐 = 0 indicates they are irrelevant. Formally, let x𝑗 and x𝑐
represent the one-hot representation of item 𝑖 𝑗 and 𝑖𝑐 respectively,
we can simply construct the denoising generator as a Multi-Layer
Perception (MLP) to model the relevance between 𝑖 𝑗 and 𝑖𝑐 :

G(𝑖 𝑗 , 𝑖𝑐 ) ∼ 𝑓 (x𝑗 ⊕ x𝑐 ) (1)

where ⊕ is the vector concatenation operation, and MLP network
𝑓 (·) with the sigmoid activation utilized in Eq. 1 performs nonlinear
transfer to identify the relevance between the two items. Here,
we can adopt a simple threshold or sampling strategy to binarize
the real-valued output by 𝑓 (·). For example, 𝑦 𝑗,𝑐 is set to 1 when
𝑓 (x𝑗 ⊕ x𝑐 ) ≥ 0.5.
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However, this hard-coding (i.e., 0 vs. 1) of item-level relevance by
G is not differentiable and prevents the model from being trained
well via back-propagation. To address this issue, inspired by [26, 34],
we integrate a Gumbel Softmax into our denoising generator as a
differentiable surrogate to support model learning over the discrete
output. Specifically, the new denoising generator is rewritten as
follows:

𝑝 = 𝑓 (x𝑗 ⊕ x𝑐 ) (2)

G(𝑖 𝑗 , 𝑖𝑐 ) =
exp((log(𝑝) + 𝑔1)/𝜏)∑1

𝑦=0 exp(log(𝑝𝑦 (1 − 𝑝)1−𝑦) + 𝑔𝑦)/𝜏)
(3)

where 𝑔𝑦 is i.i.d sampled from a Gumbel distribution as a noisy dis-
turber: 𝑔 = − log(− log(𝑥)) and 𝑥 ∼ Uniform(0, 1). In Eq. 3, 𝜏 > 0
is the temperature parameter to smooth the discrete distribution of
G. That is, 𝜏 adjusts the sharpness of the relevance estimation gen-
erated by G. When 𝜏 → 0, G approximates to a one-hot vector. On
the other hand, when 𝜏 →∞, G cannot distinguish the relevance
from the counterpart.

Now, we can apply a simple threshold strategy to classify item
𝑖 𝑗 into postive sub-basket 𝑏𝑝𝑜𝑠𝑡 when G(𝑖 𝑗 , 𝑖𝑐 ) ≥ 0.5; otherwise,
negative sub-basket 𝑏𝑛𝑒𝑔𝑡 . In other words, we can explicitly decom-
pose the purchase history of user 𝑢 into a sequence of positive
sub-baskets 𝐵𝑝𝑜𝑠

𝑖𝑐
={𝑏𝑝𝑜𝑠1 , 𝑏

𝑝𝑜𝑠

2 , · · · , 𝑏𝑝𝑜𝑠𝑛 } and a sequence of nega-
tive sub-baskets 𝐵𝑛𝑒𝑔

𝑖𝑐
={𝑏𝑛𝑒𝑔1 , 𝑏

𝑛𝑒𝑔

2 , · · · , 𝑏𝑛𝑒𝑔𝑛 }.

3.3 Context Encoder

For each sub-basket, we firstly derive the embedding representation
by utilizing a simple average pooling operation as follows:

b𝑝𝑜𝑠𝑡 =
1∑

𝑖 𝑗 ∈𝑏𝑝𝑜𝑠𝑡
G(𝑖 𝑗 , 𝑖𝑐 )

∑
𝑖 𝑗 ∈𝑏𝑝𝑜𝑠𝑡

G(𝑖 𝑗 , 𝑖𝑐 ) · v𝑖 𝑗 (4)

b𝑛𝑒𝑔𝑡 =
1∑

𝑖 𝑗 ∈𝑏𝑛𝑒𝑔𝑡
(1 − G(𝑖 𝑗 , 𝑖𝑐 ))

∑
𝑖 𝑗 ∈𝑏𝑛𝑒𝑔𝑡

(1 − G(𝑖 𝑗 , 𝑖𝑐 )) · v𝑖 𝑗 (5)

where b𝑝𝑜𝑠𝑡 and b𝑛𝑒𝑔𝑡 represent the positive and negative sub-basket
representations of 𝑡-th basket respectively, and v𝑖 𝑗 is the learn-
able embedding representation for item 𝑖 𝑗 . Afterwards, it becomes
straightforward to model the sequential interactions for two sub-
basket sequences B𝑝𝑜𝑠

𝑖𝑐
and B𝑛𝑒𝑔

𝑖𝑐
respectively. Here, we utilize

Gated Recurrent Unit (GRU) [4] as the context encoder to derive the
hidden state for each sub-basket in the corresponding sequence1:

h𝑝𝑜𝑠𝑡 = GRU(b𝑝𝑜𝑠𝑡 , h𝑝𝑜𝑠
𝑡−1) (6)

The hidden state calculated for the last sub-basket 𝑏𝑝𝑜𝑠𝑛 (denoted
as h𝑝𝑜𝑠

𝑖𝑐
) works as a composition of the user’s preference towards

target item 𝑖𝑐 . On the contrary, the hidden state h𝑛𝑒𝑔
𝑖𝑐

can be consid-
ered as a mixture of the user’s preferences irrelevant to 𝑖𝑐 . Note that
the same GRU network is applied for both sub-basket sequences
(i.e., B𝑝𝑜𝑠

𝑖𝑐
and B𝑛𝑒𝑔

𝑖𝑐
).

3.4 Anchor-Guided Contrastive Learning

The objective of model optimization is to guide the relevance
learning of the denoising generator and help estimate the user’s
1It is easy to utilize different sequence modeling networks here. We leave the explo-
ration as a part of future work.

Algorithm 1: Learning algorithm of CLEA

Input: learning rate 𝛼 , iteration number 𝑛𝑢𝑚, number of epochs.
Output: Φ ( Φ𝐺𝑅𝑈 , ΦD and ΦG )

Initialize Φ← random values;
1: Stage 1 : the process of pretraining

for epoch = 1 to EPOCHS1 do
b𝑡 ← 1∑

𝑖 𝑗 ∈𝑏𝑡

∑
𝑖 𝑗 ∈𝑏𝑡 v𝑖 𝑗 ;

h𝑎𝑛𝑐ℎ𝑜𝑟𝑡 ← GRU(b𝑡 , h𝑎𝑛𝑐ℎ𝑜𝑟𝑡−1 );
h𝑎𝑛𝑐ℎ𝑜𝑟
𝑖𝑐

← h𝑎𝑛𝑐ℎ𝑜𝑟
𝑇

;
Train Φ𝐺𝑅𝑈 and ΦD according Eq. 10;

2: Stage 2 :
while not converged do

for epoch = 1 to EPOCHS2 do
Sample 𝑔𝑦 ∼ Gumbel (0,1);
Split 𝐵 into 𝐵𝑝𝑜𝑠

𝑖𝑐
and 𝐵𝑛𝑒𝑔

𝑖𝑐
using Eq. 3;

Update ΦG based on Eq. 9 with Φ𝐺𝑅𝑈 and ΦD fixed;
Anneal 𝜏 after a few batches;

for epoch = 1 to EPOCHS3 do
Split 𝐵 into 𝐵𝑝𝑜𝑠

𝑖𝑐
and 𝐵𝑛𝑒𝑔

𝑖𝑐
using Eq. 3;

Update Φ𝐺𝑅𝑈 and ΦD based on Eq. 9 with ΦG fixed;

preference over the target item. As mentioned above, the preference
feature h𝑝𝑜𝑠

𝑖𝑐
is expected to precisely capture informative semantics

that is relevant to the target item 𝑖𝑐 . Hence, we would like to make
a correct recommendation in terms of h𝑝𝑜𝑠

𝑖𝑐
. Actually, there are two

correlated viewpoints to achieve this purpose: (1) each relevant
item extracted by the denoising generator G indeed carries some
discriminative signal towards the user’s preference over item 𝑖𝑐
against other items. In this sense, the target item should be eas-
ily inferred (i.e., a high preference estimation) by performing the
sequential modeling over the positive sub-baskets (i.e., h𝑝𝑜𝑠

𝑖𝑐
); (2)

each irrelevant item extracted by the denoising generator G should
tell nothing towards the user’s preference over item 𝑖𝑐 . Hence, the
preference estimation made in terms of h𝑛𝑒𝑔

𝑖𝑐
should be relatively

low.
Accordingly, we firstly calculate the likelihood that the user will

purchase item 𝑖𝑐 as follows:

D(h𝑝𝑜𝑠
𝑖𝑐
) =

𝑒𝑥𝑝 (h𝑝𝑜𝑠
𝑖𝑐
·w𝑐 )∑

𝑖𝑙 ∈I 𝑒𝑥𝑝 (h
𝑝𝑜𝑠

𝑖𝑐
·w𝑙 )

(7)

where w𝑐 and w𝑙 are the learnable preference embeddings for item
𝑖𝑐 and 𝑖𝑙 respectively, D(h

𝑝𝑜𝑠

𝑖𝑐
) ∈ (0, 1) is the likelihood where a

larger value indicates the higher preference. Then the objective
function is formulated as follows:

ℓ =
∑

𝑖𝑐 ∈𝑏𝑛+1𝑢

[
𝑙𝑜𝑔

(
D(h𝑝𝑜𝑠

𝑖𝑐
)
)
+ 𝑙𝑜𝑔

(
1 − D(h𝑛𝑒𝑔

𝑖𝑐
)
) ]
− 𝜆 | |Φ| |2 (8)

where 𝜆 is the regularization coefficient. Symbol Φ represents all
model parameters including Φ𝐺 for denoising generator G, Φ𝐺𝑅𝑈

for GRU module and Φ𝐷 for likelihood calculatorD. Many stochas-
tic gradient descent techniques can be utilized to perform model
learning. Here, we use the Adam optimizer [5] to maximize the
objective function over all training instances. Also, to reduce the
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Table 1: Statistics of the datasets used in our experiments.

Dataset #users #items #transactions #average item count
per transaction

#average transaction count
per user

Ta-Feng 13,949 11,997 93,372 6.27 6.69
ValuedShopper 9,997 6,421 28,0762 9.17 28.08
Dunnhumby 36,241 4,995 176,849 10.80 5.00
Instacart 6,886 8,222 112,503 9.20 16.33

impact of model initialization and explore the parameters in a larger
space, we start the model training with some relatively large 𝜏 for
denoising generator G, and then anneal it gradually to a small
constant (ref. Section 4.1).

Note that the denoising generator G is expected to optimize the
objective function by drawing a more precise distinction between
the relevant items and the noise from a basket. However, this pur-
pose is not guaranteed since no item-level relevance information is
provided to supervise the learning of G. In Eq. 8, we only calculate
how accurate the proposed CLEA estimates the user’s preference
based on the training set. In the preliminary study, we find that the
model training with Eq. 8 often produces unstable performance. As
lack of supervised signals, the inferior learning of G could be easily
repaired by the updating of the other parameters such as context
encoder or preference embeddings (ref. Eq. 7).

Inspired by [21], we introduce a two-stage anchor-guided con-
trastive learning process to facilitate the optimization of CLEA.
When denoising generator G performs under expectation, we can
be certain about the user’s preference over target item 𝑖𝑐 in terms of
h𝑝𝑜𝑠
𝑖𝑐

. However, when we turn off G by treating all items in each bas-
ket as relevant, the original sequence of historical baskets is equiva-
lent to the corresponding positive sub-basket sequence. In this case,
we can consider the resultant h𝑝𝑜𝑠

𝑖𝑐
derived by the context encoder as

a preference anchor h𝑎𝑛𝑐ℎ𝑜𝑟
𝑖𝑐

by setting G(𝑖 𝑗 , 𝑖𝑐 ) to be 1 in Eq. 4. We
believe that h𝑎𝑛𝑐ℎ𝑜𝑟

𝑖𝑐
could introduce some uncertainty, leading to a

relatively low preference estimation, i.e., D(h𝑝𝑜𝑠
𝑖𝑐
) > D(h𝑎𝑛𝑐ℎ𝑜𝑟

𝑖𝑐
).

Similarly, when G performs well, the negative sub-basket generated
by G cannot infer the user’s preference over item 𝑖𝑐 . That is, the
preference estimation made by h𝑎𝑛𝑐ℎ𝑜𝑟

𝑖𝑐
should be larger than the

counterpart from h𝑛𝑒𝑔
𝑖𝑐

, i.e.,D(h𝑎𝑛𝑐ℎ𝑜𝑟
𝑖𝑐

) > D(h𝑛𝑒𝑔
𝑖𝑐
). Therefore, this

objective function can be written as follows:

ℓ =
∑

𝑖𝑐 ∈𝑏𝑛+1𝑢

[
𝑙𝑜𝑔𝜎

(
D(h𝑝𝑜𝑠

𝑖𝑐
) − D(h𝑎𝑛𝑐ℎ𝑜𝑟𝑖𝑐

)
)

+ 𝑙𝑜𝑔𝜎
(
D(h𝑎𝑛𝑐ℎ𝑜𝑟𝑖𝑐

) − D(h𝑛𝑒𝑔
𝑖𝑐
)
) ]
− 𝜆 | |Φ| |2

(9)

Where 𝜎 is a non-linear function which is chosen as 𝜎 (𝑥) =
1

1+𝑒−𝑥 . As we can see, comparing with Eq. 8, the newly added
D(h𝑎𝑛𝑐ℎ𝑜𝑟

𝑖𝑐
) introduces a contrastive learning objective forD(h𝑝𝑜𝑠

𝑖𝑐
)

and D(h𝑛𝑒𝑔
𝑖𝑐
) respectively. This forces CLEA to learn a robust h𝑝𝑜𝑠

𝑖𝑐
to capture the credibly relevant items for each basket. Note that
since both h𝑝𝑜𝑠

𝑖𝑐
and h𝑛𝑒𝑔

𝑖𝑐
are compared against anchor h𝑎𝑛𝑐ℎ𝑜𝑟

𝑖𝑐
, the

discriminative ability of h𝑎𝑛𝑐ℎ𝑜𝑟
𝑖𝑐

should be sufficiently strong to
support the goal of denoising basket for better recommendation.

Therefore, we devise a two-stage learning process to accommodate
the optimization of h𝑎𝑛𝑐ℎ𝑜𝑟

𝑖𝑐
. Specifically, the whole margin learning

process performs as follows:

• In the first step, we first train D(h𝑎𝑛𝑐ℎ𝑜𝑟𝑖𝑐
) to obtain a bench-

mark without performing denoising generator, and the ob-
jective function is:

ℓ𝑎𝑛𝑐ℎ𝑜𝑟 =
∑

𝑖𝑐 ∈𝑏𝑛+1𝑢

𝑙𝑜𝑔
(
D(h𝑎𝑛𝑐ℎ𝑜𝑟𝑖𝑐

)
)
− 𝜆 | |Φ| |2 (10)

• In the second stage, we use the well pretrained D(h𝑎𝑛𝑐ℎ𝑜𝑟𝑖𝑐
)

to guide the learning process of D(h𝑛𝑒𝑔
𝑖𝑐
) and D(h𝑝𝑜𝑠

𝑖𝑐
) ac-

cording to Eq. 9. We iterate these two steps until coverage.
The detailed algorithm is shown in Algorithm 1. As for next

basket recommendation, we use Eq. 3 to directly generate relevant
items with threshold 0.5. Then, the learned likelihood calculator D
is used to assign a likelihood score for each candidate item with
Eq. 7. We then select the top-𝐾 items as the final recommendations.

4 EXPERIMENT

In this section, we conduct extensive experiments over four real-
world datasets to evaluate the efficacy of CLEA against the up-to-
date state-of-the-art alternatives.

4.1 Experimental Setup

Dataset.We use four real-world datasets in our experiments: TaFeng2,
ValuedShopper3, Dunnhumby4 and Instacart5. As for TaFeng, Val-
uedShopper and Dunnhumby, we take the corresponding datasets
released in [9]. As for Instacart, it originally contains over 3million
grocery orders from more than 200, 000 users. We take all transac-
tions of a sampled 10% users from the test type user set (i.e., 75, 00
from 75000) for experiments. Following [13], we remove users and
items with less than ten interaction records for all datasets. In ad-
dition, we filter out all the users with fewer than 3 transactions.
The statistics of the four datasets after pre-processing are shown in
Table 1.

For each user, we sort her/his records according to the timestamp
to form the basket sequence. Based on the sorted baskets, we hold
out the last basket of each user as test data, the penultimate one
as validation data, and the rest as training data. Similar with [11],
we utilize sampled metrics to speed up the computation. In order

2https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset
3https://www.kaggle.com/c/acquire-valued-shoppers-challenge/overview
4https://www.dunnhumby.com/careers/engineering/sourcefiles
5https://www.kaggle.com/c/instacart-market-basket-analysis
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Table 2: Performance comparison on basket recommendation between the baselines and our model with % omitted. The best

and second best results in each row are highlighted in boldface and * respectively. ▲% refers to the absolute performance gain

against the best baseline, which is consistently significant at 0.05 level.

Dataset Evaluation
Metric

Conventional Methods Deep Methods
▲%

POP-K PSP ItemKNN FPMC DREAM GRU4Rec SASRec Beacon BERT4Rec CLEA

Instacart

Recall@5 5.07 19.31 18.35 24.80 26.78 28.14 30.90 31.63 32.53∗ 36.47 3.94
Prec@5 9.81 31.79 27.09 39.69 41.30 44.58 46.76 49.21 51.03∗ 55.36 4.33
F1@5 6.11 21.35 19.19 27.19 28.68 30.54 33.07 34.20 35.35∗ 39.08 3.73

NDCG@5 11.26 34.73 29.50 45.82 49.05 51.94 53.97 56.58 59.16∗ 63.07 3.91

Dunnhumby

Recall@5 5.40 8.39 8.08 10.21 11.14 11.36 12.08 12.68 13.71∗ 15.34 1.63
Prec@5 22.00 34.45 27.86 41.38 42.41 43.75 46.36 49.57 51.38∗ 59.03 7.65
F1@5 8.20 12.68 11.44 15.19 16.22 17.01 17.70 18.31 19.79∗ 22.49 2.70

NDCG@5 21.75 39.21 23.11 44.07 47.41 48.62 50.57 54.29 56.54∗ 63.08 6.54

TaFeng

Recall@5 6.82 13.63 13.33 15.91 16.93 17.27 17.44 18.21 19.02∗ 20.03 1.01
Prec@5 4.44 12.92 12.17 13.67 14.04 14.28 15.00 15.76 16.21∗ 18.16 1.95
F1@5 4.31 11.06 10.52 11.88 12.46 12.68 12.91 13.74 14.29∗ 15.56 1.27

NDCG@5 8.81 18.05 15.45 20.40 21.28 21.85 23.15 23.83 24.52∗ 27.17 2.65

Valuedshopper

Recall@5 5.70 9.88 8.67 12.30 12.95 14.33 14.70 15.43 16.48∗ 17.73 1.25
Prec@5 21.25 36.67 30.75 46.76 47.74 51.37 53.02 55.99 58.48∗ 63.43 4.95
F1@5 8.55 15.21 12.73 18.54 19.28 21.15 21.87 22.84 24.39∗ 26.15 1.76

NDCG@5 23.42 38.77 29.95 49.95 51.57 55.75 57.07 60.73 62.86∗ 66.10 3.24

to improve the quality of the estimate, each ground-truth basket is
paired with 1,000 negative items [12].

Baselines. Following [18], we compare the proposed CLEA against
the conventional baselines and up-to-date deep models. ItemKNN
and FPMC are implemented by RecBole [36].

• Pop-K : This is a weak baseline by returning top-𝐾 items from
the training set in terms of basket frequency.
• PSP [31]: A personalized sequential pattern mining-based
next item recommendation framework that exploits addi-
tional user-specific sequence importance.
• ItemKNN : [20]. It is a classical collaborative filtering solution
based on item-level similarity, which is defined as the ratio
of the co-occurrence number to the geometric mean of the
two items in terms of basket frequency [18].
• FPMC [19]: FPMC is a shallow model that integrates hidden
factors and first-order Markov chains together for basket
recommendation.
• DREAM [33]: DREAM leverages recurrent neural network to
model the dynamics of users’ behaviors and the sequential
patterns between items.
• GRU4Rec [7]: GRU4Rec models sequential information by
Gated Recurrent Unit and the prediction for the next basket
is made through a 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 layer.
• SASRec[11]: SASRec utilizes a self-attention mechanism to
model the whole sequence for sequential recommendation.
To adapt SASRec for basket recommendation setting, the
items in a basket share the same position embedding.
• Beacon [14]: It is a state-of-the-art next basket recommenda-
tion model that exploits pairwise item correlations.

• BERT4Rec [22]: BERT4Rec uses a bidirectional self-attention
network to model user sequential behaviors. Similar to SAS-
Rec, we set the same position embedding for items of a basket
to fit the next basket recommendation task.

Evaluation Metrics. For each user, a method will produce a top-𝐾
recommendation list for evaluation. We employ the widely used
Precision@𝐾 (Prec@𝐾 ), Recall@𝐾 , F1@𝐾 , and NDCG@𝐾 as evalu-
ation metrics where 𝐾 is set to 5 in our experiments. The statistical
significance test is conducted by performing the paired t-test.

Parameter Settings. To make a fair comparison, we adopt the fol-
lowing settings for all methods: the batch size is set to 128; all embed-
ding parameters are randomly initialized in the range of (0, 1); and
the model dimension is tuned in the range of [32, 64, 96, 128, 256].
We optimize each of them according to the validation sets. For
ItemKNN, the number of nearest neighbors is set to 20. For PSP, we
use PrefixSpan [17] to mine sequential patterns with the length up
to 6, themining support is tuned in the range of [0.01,0.05,0.1,0.2,0.5].
For SASRec, we set the maximum length of a basket sequence to
20 (i.e., 𝑛 = 20), and we add paddings when the sequence length
is fewer than that. For our model, the hidden dimension and em-
bedding size are both set to 64. We optimize our model with adam
optimizer. The initial temperature 𝜏 in Gumbel Softmax is set to 10.
We follow [10] to anneal 𝜏 according to the following schedule:

𝜏 ←𝑚𝑎𝑥
(
0.3, 𝜏𝑒𝑥𝑝 (−𝑟𝑡)

)
where 𝑡 is the global training batches, 𝑟 represents the decay rate,
which is set to 𝑟 = 10−4. We anneal the temperature according the
above function after every 500 batches.
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Figure 3: Performance curves of CLEA and CLEA
−𝑎𝑛𝑐ℎ𝑜𝑟

with varying iteration numbers.

4.2 Performance Comparison

Table 2 presents a summary of experimental results of different
methods. Here, we have the following observations:

(1) For conventional methods, it is expected that Pop-K performs
worst on all datasets. Both PSP and ItemKNN perform better than
Pop-K by considering interactions among items. Comparing with
ItemKNN, PSP can capture high-order sequential patterns, resulting
in better performance on all datasets. Though effective, PSP and
ItemKNN face the sparse problem as these statistical approaches
require sufficient data. By modeling both user’s general taste and se-
quential patterns, FPMC alleviates the sparse problem and performs
better than other conventional methods.

(2) It is clear that deep methods perform better than conventional
methods on all datasets. This verifies the necessity of applying
nonlinear learning to model the complex interactions among items.
Among these models, Beacon utilizes correlation information over
items to enhance the representations of basket sequences, and
outperforms DREAM and GRU4Rec, which equally treat all items’
contributions in sequential models. In addition, we observe that
SASRec outperforms DREAM and GRU4Rec on the four datasets
too, which indicating that self-attention mechanism is effective for
sequential modeling. It is worthwhile to highlight that BERT4Rec
> Beacon > SASRec. The reason might be that bidirectional self-
attention network and the Cloze objective are more effective to
model sequential information, which is confirmed in [22].

(3) Finally, our proposed CLEA achieves the best performance
against all the methods on the four datasets. Though Beacon also
suggests that there exists informative correlations that are benefi-
cial for next basket recommendation, it cannot identify which item
is really needed for estimating the next choice. Besides, the irrel-
evant noises are also kept, which may complicate the preference
learning. The core novelty of CLEA is to automatically analyze
interactions between historical items and the target item. Compar-
ing with Beacon, CLEA can well model these interactions from a
more microscopic perspective. Hence, a more precise estimation
of the user’s preference can be learnt. Specifically, taking the In-
stacart dataset as an example, when comparedwith the best baseline
method (i.e., BERT4Rec), the absolute performance improvement
by CLEA is around 3.94%, 4.33%, 3.73% and 3.91% in terms of Preci-
sion@5, Recall@5, F1-score, and NDCG@5 respectively.

4.3 Further Analysis

Analysis on Different User Groups. To further investigate the
performance of different methods, we split the users into three
groups (i.e., sparse, medium and dense) based on their average

Table 3: Performance comparison on Instacart over differ-

ent user groups. The * indicates the best performed in (a)-(i).

Best performance is written in bold.

User
Groups Method Recall@5 Prec@5 F1@5 NDCG@5

Sparse

(a) POP-K 4.32 4.55 4.12 5.45
(b) PSP 29.31 22.95 22.81 32.17
(c) ItemKNN 27.57 19.92 20.89 27.07
(d) FPMC 33.84 27.42 27.86 39.05
(e) DREAM 35.73 29.32 31.07 41.66
(f) GRU4Rec 39.99 31.37 31.92 46.70
(g) Beacon 41.31 31.66 32.39 47.44
(h) SASRec 39.38 30.72 31.33 45.82
(i) BERT4Rec 41.67∗ 32.39∗ 33.06∗ 48.66∗
(j) CLEA 45.61 36.40 36.82 53.05

▲% 3.94 4.01 3.76 4.39

Medium

(a) POP-K 5.09 8.16 5.82 9.59
(b) PSP 20.01 30.11 22.27 33.80
(c) ItemKNN 18.54 25.50 19.77 27.55
(d) FPMC 25.17 36.75 27.81 41.85
(e) DREAM 26.88 38.94 27.99 44.70
(f) GRU4Rec 29.14 42.36 31.81 49.03
(g) Beacon 32.78 46.20 35.67 54.05
(h) SASRec 31.15 43.30 33.96 51.17
(i) BERT4Rec 33.00∗ 46.84∗ 35.89∗ 54.41∗
(j) CLEA 37.68 52.42 40.63 60.08

▲% 4.68 5.58 4.74 5.67

Dense

(a) POP-K 5.49 14.98 7.65 15.76
(b) PSP 13.14 38.62 19.02 38.43
(c) ItemKNN 12.81 33.26 17.46 33.42
(d) FPMC 18.65 49.53 24.99 52.18
(e) DREAM 19.92 49.87 26.51 54.13
(f) GRU4Rec 20.43 54.18 28.16 57.94
(g) Beacon 24.60 63.01 33.49 65.82
(h) SASRec 23.91 60.48 32.12 63.69
(i) BERT4Rec 26.61∗ 67.12∗ 35.96∗ 71.05∗
(j) CLEA 28.63 70.09 38.51 73.11

▲% 2.02 2.97 2.55 2.06

basket size, and conducted the comparisons on different user groups.
Take Instacart dataset as an example, a user is classified into the
sparse group if the average basket size is less than 5, and dense if it
is larger than 10. The remaining users are taken as the medium. In
this way, the proportions of sparse, medium and dense are 20%, 45%,
and 35% respectively. Here we only report the comparison results on
Instacart dataset, similar conclusions can also be drawn from other
datasets. The results are shown in Table 3. From the results, we can
see that CLEA consistently achieves significant performance gain
against all the baselines, including the attention-based solutions
like SASRec and BERT4Rec. This further validates the effectiveness
of CLEA to perform basket denoising for better recommendation
performance.
Ablation Study. The core merit of CLEA is that a denoising gen-
erator and a contrastive learning process G are devised to utilize
only items relevant to the target item for preference learning. Here,
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Figure 4: Heatmap on four datasets. The x-axis denotes the initial temperature in {1, 5, 10, 100, 500, 1000}, and y-axis denotes

different decay rates. A darker color represents a better performance.

Figure 5: The impact of the dimension size in terms of F1

on four datasets. The dimensionality is increased from 32

to 256. The rectangle indicates the best performance on the

dataset.

we perform a series of ablation studies to check the effect of each
design choice with the performance difference over the test set.

In Eq. 9, we utilize the original basket sequence as an anchor
to guide both the relevance and preference learning. Hence, we
first investigate the effect of this contrastive learning process by
removing this anchor-guided objective. Instead, we use Eq. 8 for
model optimization.We name this variant asCLEA −𝑎𝑛𝑐ℎ𝑜𝑟 . Figure 3
plots the performance curves of CLEA and CLEA −𝑎𝑛𝑐ℎ𝑜𝑟 . We can
see that comparing with CLEA −𝑎𝑛𝑐ℎ𝑜𝑟 , CLEA obtains a better
performance and converges faster. These observations on all four
datasets are quite consistent. It demonstrates the correctness of the
anchor-guided contrastive learning devised in CLEA.

Moreover, we remove the denoising generator G on the basis of
CLEA. In this sense, the original basket sequence B𝑢 was no longer
divided into two sub-baskets, but is directly fed into the context
encoder to obtain its aggregated representation ℎ𝑎𝑛𝑐ℎ𝑜𝑟 . We name
this degraded model as CLEA −𝑑𝑒𝑛 , and perform optimization ac-
cording to Eq. 10. Comparing with the previous attention methods
that assign weights on items, CLEA utilizes a hard-coding scheme
to check whether each item is relevant to the target item or not.
Specifically, when obtaining embeddings of sub-baskets in Eq. 4
and 5, we choose not to split the original basket into two disjoint
sub-baskets. That is, we only depend on the output of G(𝑖 𝑗 , 𝑖𝑐 ) as
an attention mechanism to derive the sub-basket representations.
We name this variant as CLEA 𝑠𝑜 𝑓 𝑡 . Moreover, we also examine

Table 4: Performance comparison of three different varia-

tion models against CLEA.

Dataset Evaluation
Metric CLEA CLEA−𝑑𝑒𝑛 CLEA𝑠𝑜𝑓 𝑡 CLEA𝑗𝑜𝑡

Instacart
Recall@5 36.47 31.26 34.53 35.24

Precision@5 55.36 48.69 53.11 54.34
F1@5 39.08 33.77 37.04 38.16

NDCG@5 63.07 56.10 60.76 62.10

Dunnhumby
Recall@5 15.34 12.03 13.80 14.88

Precision@5 59.03 46.97 54.27 57.77
F1@5 22.49 17.70 20.36 21.77

NDCG@5 63.08 52.19 59.08 61.63

TaFeng
Recall@5 20.03 17.93 18.55 18.77

Precision@5 18.16 15.80 16.23 16.35
F1@5 15.56 13.61 14.04 14.21

NDCG@5 27.17 23.88 24.68 25.33

ValuedShopper
Recall@5 17.73 14.88 16.12 16.01

Precision@5 63.43 53.92 59.34 58.28
F1@5 26.15 22.16 24.27 23.76

NDCG@5 66.10 58.31 63.01 62.07

the effect of the two-stage learning by performing a joint learn-
ing instead (namely CLEA 𝑗𝑜𝑡 ). The results of CLEA and its three
variants models are shown in Table 4.

We can see that CLEA −𝑑𝑒𝑛 performs worst on all evaluation
metrics over four datasets. It indicates the necessity of dropping
irrelevant information to enhance preference learning. When apply-
ing a soft attention on items, CLEA 𝑠𝑜 𝑓 𝑡 can weaken the importance
of irrelevant items, and performs better than CLEA −𝑑𝑒𝑛 . This also
coincides with the previous findings in [11]. Also, in contrast to
CLEA 𝑠𝑜 𝑓 𝑡 , CLEA uses a hard-coding to directly drop these irrele-
vant noises, and shows a better performance than CLEA 𝑠𝑜 𝑓 𝑡 . At
last, we can observe that the two-stage learning process utilized
in CLEA can produce better recommendation performance (i.e.,
CLEA vs. CLEA 𝑗𝑜𝑡 ). This also verifies the importance of learning
a robust anchor to guide the basket denoising. In summary, this
set of experimental comparisons suggests that each design choice
in CLEA is rational to enhance next basket recommendation via
basket denoising.

Analysis on Gumble Softmax. Recall that we use Gumble Soft-
max to facilitate the modeling learning for CLEA. The temperature
𝜏 and decay rate 𝛾 are two important hyperparameters. Here, we
examine different choices of 𝜏 and 𝛾 on four datasets, and analyze
their impacts to the recommendation performance. The results on
four datasets are shown in Figure 4.

As we can see, given a fixed decay rate 𝛾 , when 𝜏 increases, the
performance of CLEA increases too. This observation demonstrates
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Figure 6: Case study on next-basket recommendation task. The left row is a basket sequence of a user sampled from Instacart

dataset. The right two rows are recommendation results of CLEA and Beacon respectively. Items and patterns in boxes indicate

relevant information identified by CLEA and Beacon respectively.

that we need a large initial temperature to guarantee a broader sam-
pling range for Eq. 3. On the other hand, when we continue to
increase the initial temperature, the overall performance decreases.
The reason is that a higher temperature exacerbates the difficulty
of model convergence. Similar observations are also made for 𝛾 .
Specifically, a small 𝛾 (i.e., 𝛾 = 10−5) makes CLEA difficult to con-
verge, and a high 𝛾 (i.e., 𝛾 = 10−2) limits the ability of exploring in
a broader sampling space. Based on the results, we set the initial
temperature as 10 and decay rare 𝛾 as 10−4 in our experiments.

Analysis on Embedding Size. At last, we study the impact of dif-
ferent embedding sizes in the range of 32 to 256. The performance
patterns on the four datasets are plotted in Figure 5. We see that
CLEA achieves optimal performance with a small dimension on
all four datasets (i.e., 64, 64, 96 and 64 on Instacart, ValuedShopper,
Dunnhumby and TaFeng respectively). Also, the performance de-
creases consistently as the embedding size becomes increasingly
large. We believe that since the denoising process removes many
irrelevant items, there is no need to model the complex interactions
between items with a large embedding. Note that a model with a
large embedding size would also easily fall into overfitting.

4.4 QUALITATIVE ANALYSIS

Previous experiments have well demonstrated that the proposed
CLEA is effective to improve the next basket recommendation
performance. In order to better understand why it is useful, we
further perform qualitative analysis with a case study on Instacart
dataset. Specifically, as shown in Figure 6, we present a snapshot of
the basket sequence for a sample user. To ease the illustration we
only display the last 3 baskets. Given the basket sequence, we use
CLEA and Beacon to recommend what the user will buy next. For
a convenient demonstration, we provide top-3 recommendation
results of two models.

We can see that CLEA can recommend all 3 items correctly. For
example, when determining whether strawberries will be preferred,
CLEA identifies {𝑔𝑟𝑎𝑝𝑒, 𝑡𝑜𝑚𝑎𝑡𝑜} as the relevant items, and pro-
duces a high likelihood score according to Eq. 7. Similar decision
making process is also observed on bread and avocado, where CLEA

finds {𝑡𝑜𝑚𝑎𝑡𝑜, 𝑡𝑢𝑟𝑘𝑒𝑦, 𝑐ℎ𝑒𝑒𝑠𝑒, 𝑜𝑛𝑖𝑜𝑛} and {𝑡𝑜𝑚𝑎𝑡𝑜, 𝑐ℎ𝑒𝑒𝑠𝑒} as two
important patterns respectively. In contrast, by applying the global
correlation analysis with strawberries, Beacon considers banana and
grape as another two optimal recommendations. As we can see, by
generating the positive sub-basket sequence through the denoising
generator, our CLEA can well capture diverse user preferences, and
in turn make a more precise recommendation.

We also count the irrelevant items that CLEA removed. Specifi-
cally, the average removed items for each basket are 5.01, 7.54, 8.92,
and 6.23 on TaFeng, Instcacart, Dunnhumby, and ValuedShopper
respectively. It demonstrates that CLEA does denoise items from
baskets. By dropping these irrelevant items, CLEA obtains superior
performance on all datasets.

5 CONCLUSION

In this paper, we address a denoising problem in next basket recom-
mendation scenario, we propose aContrastiveLearningModel (named
CLEA) to automatically extract items relevant to the target item
for next basket recommendation. Specifically, we first devise a de-
noising generator to adaptively identify whether each item in a
historical basket is relevant to the target item or not. By splitting
the initial basket into two sub-baskets, we derive their represen-
tations through a GRU-based context encoder, which expresses
either relevant interest or irrelevant noises regarding the target
item. After that, a novel anchor-guided contrastive learning process
is then designed to simultaneously guide this relevance learning
without requiring any item-level relevance supervision. To the best
of our knowledge, this is the first work of performing item-level
denoising for a basket in an end-to-end fashion for next basket
recommendation. As future work, we plan to exploit weakly su-
pervised signals to better understand interactions among items for
further improvement.
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