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Abstract—Event detection is an important information extrac-
tion task in nature language processing. Recently, the method
based on syntactic information and graph convolution network
has been wildly used in event detection task and achieved good
performance. For event detection, graph convolution network
(GCN) based on dependency arcs can capture the sentence
syntactic representations and the syntactic information, which is
from candidate triggers to arguments. However, existing methods
based on GCN with dependency arcs suffer from imbalance and
redundant information in graph. To capture important and re-
fined information in graph, we propose Multi-graph Convolution
Network with Jump Connection (MGJ-ED). The multi-graph
convolution network module adds a core subgraph splitted from
dependency graph which selects important one-hop neighbors’
syntactic information in breadth via GCN. Also the jump
connection architecture aggregate GCN layers’ representation
with different attention score, which learns the importance of
neighbors’ syntactic information of different hops away in depth.
The experimental results on the widely used ACE 2005 dataset
shows the superiority of the other state-of-the-art methods.

Index Terms—event detection, multi-graph convolution net-
work, jump connection aggregation, bias loss function, syntactic
information in breadth and depth

I. INTRODUCTION

Event extraction program defined by ACE is to identify

events from given texts. An event is represented as a structure

comprising an event trigger with specific types and a set of
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Central Universities No.500418800, the Youth Innovation Promotion Associ-
ation CAS under Grants No. 20144310, the National Key R&D Program of
China under Grants No. 2016QY02D0405, and the Foundation and Frontier
Research Key Program of Chongqing Science and Technology Commission
(No. cstc2017jcyjBX0059).

arguments with different roles. Generally, the event extraction

(EE) task includes two sub-tasks, event detection (ED) and

argument extraction (AE). Event detection, which aims to

detect the event trigger, is an crucial part of event extraction

as the main words to the corresponding events. For example,

in the sentence ”The company fired Anwar who was an

engineer in 1998 .”, an ED system is excepted to detect an

End−Position event with the trigger word fired”. Argument

extraction aims to identify all of the participants of each event,

which are entities involved in events. In the above sentence,

the arguments of the event include comany (Role = Entity),

Anwar (Role = Person), engineer (Role = Position) and 1998
(Role = Time). In this paper, we only focus on the event

detection (ED) task.

Previous works employ sentence level sequential model

methods (Chen et al., 2015) [1]; nguyen, 2016 [2]). These

sequential methods only capture contextual information which

ignores syntactic information and suffers from the low effi-

ciency in capturing long range information. On the contrary,

the methods based on dependency tree can capture syntactic

information and the syntactic relation between triggers and

arguments. For event detection, the syntactic information in

sentence can help to identify the candidate trigger. Also, the

syntactic relation between the candidate triggers and related

arguments can effectively classify the event type of candidate

triggers. For example, in the Fig. 1 sentence, the dependency

path ’company−fired−Anwar’ to figure out the verb word

fired as the trigger word. The trigger word fired can be

identified to an End−Position (a person fired from an orga-

nization) type or an Attack (a person attack someone) type.

With the auxiliary of the information between trigger word
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fired and its related argument engineer, the trigger word

fired has more possibilities to be judged as End−Position
type instead of Attack type. The statistics of dependency arcs

hops from triggers to its related arguments as the Fig. 2 shows,

99.6% (9757/9793) triggers has the dependency relation with

its related arguments in the ACE 2005 dataset, which shows

that dependency tree arcs from triggers and related arguments

are significant for event detection.

To capture syntactic information in the dependency tree

of given sentence, we employ graph convolution network

architecture (Kipf and Welling, 2016 [4]). There are several

methods based on graph convolution network in dependency

tree graph for event detection. Nguyen ’s method [3] use

dependency tree as a graph and adopt graph convolution

network with novel pooling; (Liu et al., 2018 [5]) use graph

convolution based dependency tree with self attention for event

detection.

However, for event detection, the candidate trigger in graph

needs to select important neighbors, which mainly explore

the syntactic information and relation from the candidate

trigger to its related arguments, which we say it needs dif-

ferent neighbors in breadth. Also, the candidate trigger needs

dependency arcs’ information with different hops away in

graph to extract and filter useful and redundant information,

which we say it need different syntactic information in depth.

These GCN methods adopt syntactic information via the same

neighbors information in the breadth of graph and the same

dependency arcs’ information with the same hops away in

depth of the graph, which includes more redundant informa-

tion. The redundant information will damage the generate of

useful information and influence the identification of an event.

For instance, for the example sentence shows in Fig. 1 and

the given dependency tree graph of sentence in Fig. 3, the

trigger word fired can capture the syntactic information of its

neighbor Anwar as an related argument by graph convolution

network. However, fired can also capture the redundant

neighbor punctuation ’.’ syntactic information which shows

that the triggers need different neighbors in the breath of

graph. Also fired can capture the syntactic information with

the argument engineer at least 2 hops in the dependency tree

graph, but capture the syntactic information with arguments

Anwar or company only need one hop, which shows that

triggers in graph need neighbors with different hops away in

the depth of graph. Therefore, it is necessary to explicitly

employ syntactic information in the breadth and depth of

dependency tree graph for event detection.

In this paper, we propose a Multi-Graph Convolution Net-

work with Jump Connection for Event Detection which called

MGJ-ED. We use multi-graph convolution network based on

dependency tree graph to select important one-hop neighbors’

syntactic information in the breadth of graph. Also we use

jump connection aggregation method (Xu et al., 2018) [6]

to adaptively learn the neighbors’ importance of syntactic

information with different hops away in the depth of graph.

We evaluate the performance of our proposed MGJ-ED

method on the wildly used ACE 2005 dataset to demonstrate

the superiority of our method. Our main contributions can be

summarized as follows:

• We propose a method to select neighbors in the breadth

of graph via multi-graph convolution network based on

dependency tree graph.

• We use the architecture of jump connection to aggregate

graph representations, which can adaptively learn the

importance of candidate triggers’ neighbors with different

hops away in depth of the graph.

• The modules we proposed use graph information in

breadth and depth, which is the first time to use different

direction information in graph for event detection.

• We achieve the state-of-the-art performance on the widely

used ACE 2005 dataset for event detection.

II. TASK DESCRIPTION

Event detection is a subtask of event extraction defined by

ACE. An event is defined as an occurrence with one or more

participants. We firstly introduce some ACE terminologies for

understanding the task:

• Entity mention: reference of an entity (typically a noun

phrase).

• Event mention: a phrase or sentence within which an

event is described, including event triggers and related

arguments.

• Event trigger: the main word which can most clearly

express the event occurrence (typically a noun or a verb)

• Event argument: the entity mentions that are involved

in an event.

• argument role: the relationship between an event and its

related argument in which it participates.

The event detection task aims to identify event triggers

and categorize their event types. For instance, in the sentence

”The company fired Anwar who was an engineer in 1998

.”, the event detection task excepts us to identify trigger

words ”fired” and classifies the event type as Attack. The

extraction of event arguments ”company”(Role = Entity),

”Anwar”(Role = Person), ”engineer(Role = Position)” and

”1998”(Role = Time-Within) is not involved in the ED task.

The ACE 2005 dataset annotate 8 super event types with 33

subtypes. Following previous work, we use these 33 subtypes

as our event type labels. Also, we directly use the whole entity

extent in ACE 2005 dataset.

III. THE PROPOSED METHOD

In general, event detection can be cast as a multi-class

classification problem to decide whether a word in the sentence

forms event triggers. Let W = w1, w2, ., wn be a sentence

where n means the length of sentence and wi means the i-
th token. We apply BIO annotation schema to assign trigger

labels since triggers may be multiple tokens.

Our MGJ-ED framework mainly consists of four mod-

ules: (i) encoder module that encode each token to vectors,

(ii) multi-graph convolution network module that performs

graph convolution network with syntactic graph and core

subgraph, (iii) jump connection module, which aggregates
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Fig. 1. The dependency parsing result of an example sentence, where red words represent event trigger and blue words represent arguments

Fig. 2. The statistics of shortest path distance based on dependency tree in
ACE 2005 dataset

Fig. 3. Dependency tree graph of the example sentence, where the red
node represents the trigger word ’fired’ and blue nodes represent related
arguments.

graph representation by jump connection architecture, (iv)

trigger classification module that predicts the event types of

each candidate trigger.

A. Encoder

In the Encoder Module, each token wi in sentence is

transformed to a vector xi by looking up in embedding tables

and concatenating following embedding vectors:

• Word embedding vector wordi: wordi is implemented

by looking up a pretrained word embedding matrices.

• POS-tagging embedding vector posi: posi is generated

by looking up a random initialized POS-tagging label

embedding matrices.

• The entity type embedding vector ei: Similarly to the

POS-tagging embedding, we encode entity label by a ran-

dom initialized POS-tagging label embedding matrices.

We use the whole entity extent in ACE 2005 dataset as

JMEE framework [5] did.

• Positional embedding vector pti: we encode the rela-

tive distance of the current candidate trigger word by

a random initialized embedding matrices (Nguyen and

Grishman, 2016 [2]; Liu et al., 2017 [8]).

The input sentence W can be represented to a sequence of

vector X = x1, x2, , xn. Since GCN can only capture local

graph limited by the number of the GCNs’ layer, we use

LSTM to expand the sentence information with the limited

number of GCNs’ layer. Following JMEE framework [5], we

use bidirectional long-short term memory network(BiLSTM)

[9] to encode the word representation X for expanding the

sentence information:

−→pi = −−−−→LSTM(−−→pi−1, xi) (1)

←−pi =←−−−−LSTM(←−−pi−1, xi), (2)

The i-th token representation x̄i = [−→pi ,←−pi ] will be the

input of mutli-graph convolution network module as the

first layer, where [ ] is the concatenation operation. We set

X̄ = x̄1, x̄2, ..., x̄nto the encoder output representation.

B. Mutli-graph convolution network module

Each dependency tree can be represented to a graph with n
nodes by its adjacency matrix A = n ∗ n. Let G = {V,E} be

the dependency tree graph of sentence W , Where V (|V | = n)
as the sets of n nodes and E as the edges of G respectively.

In V , each vi is the encoder module output representation

of token wi in W . Each edge(vi, vj) ∈ E is a directed

dependency arc from token wi to wj , where A[i, j] = 1. As
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for an GCN in l-th layer, we denote hl−1
i as the input of GCN

layer and hl
i as the output of GCN layer, where h0

i is the

encode module representation of i-th token in W . The graph

convolution equation as follows:

hl
i = f(

n∑

j=1

AijW
l
gh

l−1
j + blg) (3)

Where W l
g is the weight matrix in linear transformation, blg is

the bias term in l-th layer. f is the non-linear function.

To flow information in opposite direction, we add reversed

edge E(vj , vi) of directed edge E(vi, vj) in the graph G,

where A[j, i] = 1. For capturing the information of the node

itself, we add self-loops in graph, where A[i, i] = 1. Therefore,

we denote graph Ḡ with reversed edges and self-loops. For

example, in the dependency arcs shown in Fig. 1, there are four

dependency arcs with two nodes ”fired” and ”Anwar”: the

directed arc (”fired”, ”Anwar”) , the reversed arc (”Anwar”,

”fired”) and two self loop arc (”fired”, ”fired”), (”Anwar”,

”Anwar”). Also, we use degree normalization to solve the

high degree bias problem. Therefore, the equation can be

written as follows:

hl
i = f(

n∑

j=1

ĀijW
l
gh

l−1
j /di + blg) (4)

where Ā is the adjacency matrix with reversed edges and self-

loops in dependency graph Ḡ, and di =
∑n

j=1 Āij is the

degree of token i in the resulting graph.

To select the neighbors which can explore syntactic infor-

mation from the candidate trigger and its related argument,

we split the dependency graph Ḡ to a core subgraph Ḡc

as the Fig. 4 shows. The core subgraph Ḡc only remains

the dependency path from candidate triggers to entities with

its self-loops, where the arguments are entity mentions in

sentence and not all event includes arguments. The core

subgraph’s representation in l-th layer of GCN can be written

as follows:

hl
ci = f(

n∑

j=1

¯AcijW
l
cgh

l−1
cj /dci + blcg) (5)

Where hl
c is the output of l-th GCN layer, Āc is the

adjacency matrix and dci =
∑n

j=1
¯Acij in the core subgraph

Ḡc. Also W l
cg is the weight matrix, blcg is the bias item and f

is the non-linear function.

As Fig. 5 shows, we use the encoder modules’ represen-

tation X̄ as the input of graph convolution network based

on the dependency graph Ḡ and coregraph Ḡc. Also we

stack L over layers of GCN, which can generate the graph

representation in L hops. For dependency graph Ḡ, it can

represent the whole dependency relation in the sentence. The

GCN architecture based on graph Ḡ can capture the syntactic

information in sentence. As for the core subgraph Ḡc , the

weight of dependency arcs along with the dependency path

from candidate trigger to entities including arguments are

1 and the others are 0 compared with the original graph.

The GCN architecture based on the core subgraph Ḡc can

strongly select the neighbors in the dependency path from

Fig. 4. The dependency graph and the core subgraph splited based on graph
of example sentence, where token ′fired′ as the candidate trigger. We ignore
the self-loops for display.

candidate triggers to arguments, which captures important

syntactic information in the breadth of graph.

C. Jump connection module

Since each token in dependency tree graph need different

hops of neighbor arcs’ information in depth for event detec-

tion, we employ a jump connection aggregation mechanism

to extract and filter useful syntactic information in the depth

of graph by learning the importance of different GCN layers’

representation and aggregate the GCN layers’ representation.

Since jump connection aggregation mechanisms in different

graph are same, we ignore different graphs in jump connection

mechanism for convenience. The vector of aggregation with

GCN layers’ representation in two graph can be written as

follows:

h̄i =

L∑

l=1

αl
ih

l
i, (6)

Where h̄i is the aggregation’ vector with GCN layers’

representation, L is the number of GCN layers, αi is the

attention score of the token i for each layer l in both graph,∑L
l=1 α

l
i = 1. The attention score represents the importance of

the graph representation learned on l-th layer for token i. We

use LSTM attention method to calculate the attention score.

We input h1
i , ..., hL

i into a bi-directional LSTM and generate

the forward and backward representations f l
i and bli for each

layer l.The attention score αl
i will be generated by a linear

mapping of the concatenated representations [f l
i , b

l
i] :

αl
i = softmax(sli) =

exp(sli
T
Wa)

∑L
j=1 exp(s

j
ij

T
Wa)

(7)

sli = f(Wb[f
l
i , b

l
i] + bitem) (8)

Where Wa and Wb are weight matrix and bitem is the bias

term in both graphs, f is the non-linear activation function.

To aggregate the graph representations from two graph, we

use max pooling to generate representation gi = max(h̄i, h̄ci)
for each token i, where h̄i is the vector of aggregation with

GCN layers’ representation based on graph Ḡ and h̄ci is the
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Fig. 5. The architecture of the MGJ-ED method, the number of GCN layer is set to 3.

vector of with GCN layers’ representation based on the core

subgraph Ḡc .

D. Trigger Classification

In the trigger classification module, we taking the repre-

sentation gi of each token i from the multi-graph convolution

network with jump connection. We feed the token representa-

tion gi in to a fully connected network to predict the trigger

label:

yti = softmax(Ot
i) =

exp(Ot
i)∑2N+1

j=1 exp(Oj
i )
, (9)

Oi = Wogi + bo (10)

Where Wo is the weight matrix and bo is the bias term; N
is the number of trigger labels defined by ACE 2005. As for

the BIO annotation, the number of trigger labels which we

will predict is 2N +1, including None class. yti is the output

of the t-th trigger label for i-th token.

E. Biased Loss Function

Since the number of None label is much more than other

trigger labels, we adapt negative log-likelihood biased loss

function :

J(θ) = −
Ns∑

i=1

Nt∑

j=1

(log p(ytj |si, θ) · I(yti)) (11)

Where Ns is the number of the sentence in dataset, Nt is

the number of tokens in sentence si. I(yti) is an indicating

function, if yti is None class, it will set the bias number λ be

one, otherwise larger than one. λ is also a hyper parameter.

IV. EXPERIMENTS

A. Dataset, Resources and Evaluation Metric

We evaluate our MGJ-ED method by using widely used

dataset ACE 2005 for event detection. The ACE 2005 dataset

annotate 33 event subtypes, along with the BIO annotation

shcema and None Class, we will classify each token into 67

categories. To comply with previous work [2] [5], we use the

same data split includes 40 newswire documents for the test

set, 30 other documents for the dev set and 529 remaining

documents for the training set.

In the data preprocessing, we deploy the Stanford CoreNLP

toolkit for tokenizing, sentence splitting, pos-tagging and

dependency parsing. We use the pretrained word embedding

from NYT corpus with Skip-gram algorithm(Mikoloev et al.,

2013 [10]; Chen et al., 2018 [11]) .

Also, following the previous work [5] [7] [11], we use

Precision (P ) , Recall (R) and F measure (F1) to report the

performance of the model.

B. Hyper parameter Setting

The hyper parameters are tuned by the performance on the

dev dataset of the ACE 2005 dataset. In encoder module, we

set 100 dimensions for word embedding, 50 dimensions for

entity type embedding, pos-tagging embedding and positional

embedding, 300 dimensions for the hidden units of BiLSTM.

In multi-graph convolution network module, we set the hidden

units for graph convolution to 300 dimensions and the number

of graph convolution layer L to 3. In jump connection module,

we set bi-lstm hideen units dim to 300. For loss function, we

set the loss function bias weight λ to 5.

Also, we set the batch size to 32 and we utilize a fixed

length n = 50. This implies that need to cut off the longer
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TABLE I
PERFORMANCE OF DIFFERENT MODULES BASED ON MGJ-ED .

Method P R F1

GCN-naive 76.6 67.3 71.6
GCN-multi 74.6 72.1 73.3
GCN-jump 72.8 73.6 73.2
MGJ-ED 73.9 78.3 76.0

sentence and pad the shorter ones. We use the RELU (Glorot

et al., 2011 [12]) as our nonlinear activate function. We set

learning rate to 0.001, dropout rate to 0.5 and use the Adam

update rule(Kingma et al., 2014 [13]) during training. We also

fine-tuned all the embedding table during training.

C. Effect of our modules

To evaluate the impact of capturing syntactic information

in breadth and depth with multi-graph convolution network

module and jump connection module, we design models with

different architectures based on dependency arcs with graph

convolution network: 1) GCN-naive: it uses graph convolution

network based dependency graph; 2): GCN-multi: it uses

multi-graph convolution network module based on GCN; 3):

GCN-jump: it adopts jump connection architectures based

on GCN; 4): MGJ-ED: which combines both multi-graph

convolution module and jump connection module.

Table I shows the experimental results that the GCN-multi

improves 1.7% F1 scores and GCN-jump improves 1.6% F1

score compared with GCN-naive. The module of multi-graph

convolution network adds a core subgraph which can selects

the neighbors and lead the candidate trigger word to explore

the syntactic information with argument. The jump connection

aggregation module learns the importance of dependency arcs

information with different range in depth. Also combining

the two modules as MGJ-ED shows, multi-graph module and

jump connection module can effectively improve performance

each other for event detection, which improves 2.7% and 2.8%
F1 measure score compared with GCN-multi and GCN-jump.

The methods of multi-graph convolution network and jump

connection get better performance than the method based on

GCN, which proves that these method can effectively identify

event triggers in event detection task.

D. overall performance

We compare the performance one the test set with the

following state-of-the-art methods :

1). Cross Event: which uses the document information to

improve the performance for event extraction in sentence level.

(Liao and Grishman., 2011) [14].

2). CNN: a CNN model for event detection.(Nguyen and

Grishman, 2015) [15].

3). DMCNN: which uses dynamic multi-pooling method

in convolution neural network for capturing multiple events’

information (Chen et al., 2015) [16].

4). DMCNN+: the dynamic multi-pooling model with au-

tomatic labeled data (Chen et al., 2017) [17].

5). JRNN: a joint model with a bidirectional RNN and

manually designed features (Nguyen et al., 2016) [18].

TABLE II
OVERALL PERFORMANCE OF DIFFERENT THE-STATE-OF-ART METHOD ON

TEST SET

Method P R F1

Cross Event 68.7 68.9 68.8
CNN 71.8 66.4 69.0

DMCNN 75.6 63.6 69.1
DMCNN+ 75.7 66.0 70.5

JRNN 66.0 73.0 69.3
dbRNN 74.1 69.8 71.9
ANN-S2 78.0 66.3 71.7
GCN-ED 77.9 68.8 73.1

JMEE 76.3 71.3 73.7
DEEB-RNN 72.3 75.8 74.0

GCN-naive 76.6 67.3 71.6
GCN-multi 74.6 72.1 73.3
GCN-jump 72.8 73.6 73.2
MGJ-ED 73.9 78.3 76.0

6). dbRNN: which adds dependency arcs’ information over

Bi-LSTM to improve performance for event extraction (sha et

al., 2018) [7].

7). ATT-S2: which uses supervised mechanism to explicitly

exploits argument information for event detection (Liu et al.,

2017) [8].

8). GCN-ED: which uses novel pooling method based on

GCN for event detection (Nguyen et al., 2018) [3].

9). JMEE: which uses GCN with highway network and self

attention aggregate mechanism for event detection (Liu et al.,

2018) [5].

10). DEEB-ED: which used hierarchical superviesd atten-

tion based bidirectional RNN with document information for

event detection (Zhao et al., 2018) [19].

Table II shows the performance comparing to the state-of-

the art methods. From the table we can see that our MGJ-ED

model achieve the best recall and F1-measure score among

all the compared methods. Our method improve significantly

performance, which is higher over 2.5% on recall and 2.0%
on F1-measure score with the best baseline performance.

These results show the effectiveness of capturing information

in breadth and depth with multi-graph convolution network

module and jump connection module.

E. Multi-graph convolution network module analysis

The result in Table I shows that multi-graph convolution

network module can improve performance. For the multi-

graph convolution module, we split the dependency tree graph

Ḡ with reversed arcs and self-loops to a core subgraph Ḡc.

Subgraph Ḡc only remains the dependency path from candi-

date triggers to related entities. Since the nodes in original

dependency graph Ḡ have the same weight of neighbors, the

candidate triggers in graph can not select important neighbors,

such as arguments.

The core subgraph we splited can better select the important

nodes of the candidate trigger compared with some attention

method, such as GAT [27] which is widely used in GCN

models. In the core subgraph Ḡc, the arcs’ weight in de-

pendency graph from candidate triggers to entities including

arguments are set to 1, others are set to 0, which can strongly
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to select neighbors and lead the candidate triggers to capture

the information in the path with arguments. However, if we

only employ the core subgraph via GCN for event detection,

it will lost some syntactic information in sentence. Therefore,

the multi-graph convolution network module employ GCN

based on both two graphs, where the core graph via GCN

lead the nodes to choose their neighbors, which we say it

capture syntactic information for event detection in breadth.

The experiments in Table III shows that the multi-graph

convolution network module can effectively improve 1.8% F1

measure score and 0.8% score compared with the GCN-naive

model and the GCN-core model which only employs the core

subgraph via GCN.

TABLE III
PERFORMANCE OF GCN METHOD BASED ON DIFFERENT GRAPHS

Method P R F1

GCN-naive 76.6 67.3 71.6
GCN-core 70.0 75.2 72.5
GCN-multi 76.3 71.3 73.3

F. Jump connection module analysis

For the jump connection module, we weight the importance

of different GCN layers’ representation by calculating lstm

attention score. Traditional graph convolution network in graph

Ḡ uses the last layer graph representation as the input of

classifier, which involves neighbors’ information in L hops

(L is the number of GCN layer). However, traditional graph

convolution network will cause over-smoothing problem (zhou

et al., 2018graph) [20]. Also the nodes need dependency arcs’

information with different hops away in depth of graph for

event detection. To solve the problem, the jump connection

module aggregates all GCN layers’ representation and learns

the importance of nodes with different hops away by calculat-

ing the graph convolution layer attention score, which we say

it improves performance in depth for event detection.

We use the example sentence ”The company fired Anwar

who was an engineer in 1998 .” as an example to illustrate

the advantage of our jump connection module. There is an

event in the sentence: an End− position triggered by fired
with arguments Company, Anwar, Engineer and 1998,

where Fig. 3 shows the dependency tree graph. We expect

the candidate trigger fired could more focus on capturing

syntactic information from arguments (Company, Anwar) in

one hop and engineer in two hops, while the argument 1998
is a supplement of the event with three hops. We gather the

statistics of attention score from jump connection module. The

Fig. 6 shows that the first two GCN layers get more attention

score when token fired as the candidate word, which proves

that our model can capture more syntactic information within

2-hops local graph via jump connection module. Compared the

traditional GCN method which uses the last layer output as

the graph representation, the jump connection module capture

neighbors’ syntactic information with different hops away

by different layers’ importance. Also Table I illustrates that

the jump connection module can improve 1.7% F1 measure

score compared with the GCN-naive model and the MGJ-ED

model can improve 2.8% F1 measure score compared with the

GCN-multi. The attention scores and performance compared

with other models proves the superiority of jump connection

module.

Fig. 6. Visualization of the attention score of the example sentence in different
graph convolution layer based on original graph Ḡ, where token fired as the
candidate trigger. Darker red mean higher score.

G. Parameter GCN-layer analysis

As the Fig. 2 shows, we count that about 88.4% (8863/9793)

dependency path from triggers and arguments in 3 hops

based on ACE 2005 benchmark dataset, which means that 3-

layers graph convolution network can capture most syntactic

information of the sentence. Since the overfull layers may lead

the serious over-smooth problem and the Bi-LSTM encoder

architecture can expand the representation in sentence, we

believe L = 3 can have a better performance for event

detection. From Table IV we can see the MGJ-ED with 3
layers have the best performance.

TABLE IV
PERFORMANCE OF MGJ-ED WITH DIFFERENT LAYERS

Method P R F1

MGJ-ED (L = 2) 70.2 78.5 74.3
MGJ-ED (L = 3) 73.9 78.3 76.0
MGJ-ED (L = 4) 71.4 78.0 74.6

V. RELATED WORK

Event detection is an important task in nature language

processing. There are several existing approaches in the event

detection task. The early methods use different statistical

models with hand-design feature for event detection task

achieve good performance for event detection (Ahn 2006;

Ji and Grishman 2008; Hong et al. 2011) [21] [22] [23].

These feature-based methods depend on the extensive human

engineering which will influence the model performance.

Recently, the neural network models are widely utilized

in event detection task. (Nguyen et al., 2015;Nguyen and

Grishman 2016) [15] [2] employ CNN models; (Chen et al.

2015) [1] uses dynamic multiple pooling CNN model for

event detection. Recurrent neural networks (Nguyen, Cho, and

750



Grishman 2016) [18] are also employed for event detection.

Also (Liu et al.2017) [8] uses supervised argument attention

method to identify event triggers. (Liao and Grishman, 2010;

Ji and Grishman, 2008; Hong et al., 2011; Reichart and

Barzilay, 2012; Lu and Roth, 2012; Zhao et al., 2018) [14]

[23] [20] [25] [26] use document-level information to improve

the classification of trigger words. However, these sequential

modeling methods suffer from the less information between

candidate triggers and its related arguments. Also, it can not

capture the dependency syntactic information.

There are also methods based on syntactic information for

event detection. (Sha et al., 2018) [7] uses dependency arcs

over Bi-LSTM for event detection. (Nguyen and Grishman,

2018; Liu et al. 2018) [3] [5] employed graph convolution

network based on dependency tree graph for event detection

and achieve good performance. However, these dependency

tree and GCN methods can not explicitly capture the syntactic

information from the dependency tree. Different from them,

our method explores refined information in breadth and depth

of the dependency graph to improve the performance of event

detection. This is the first work to employ graph convolution

based on dependency tree graph in different direction for event

detection.

VI. CONCLUSION

The paper proposed a Multi-Graph Convolution Network

with Jump Connection framework (MGJ-ED) for event de-

tection task. In our framework we introduce multi-graph

convolution network module and jump connection module to

captures syntactic information in breadth and depth of the

dependency tree graph. The modules we proposed is the first

time to use syntactic information in different direction of the

dependency tree graph for event detection. The experiment re-

sults compared with other the-state-of-the-art method baseline

prove the superiority of our proposed method.
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