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ABSTRACT
For sequential recommender, the coarse-grained yet sparse sequen-

tial signals mined frommassive user-item interactions have become

the bottleneck to further improve the recommendation performance.

To alleviate the spareness problem, exploiting auxiliary semantic

features (e.g., textual descriptions, visual images and knowledge

graph) to enrich contextual information then turns into a main-

streammethodology. Though effective, we argue that these different

heterogeneous features certainly include much noise which may

overwhelm the valuable sequential signals, and therefore easily

reach the phenomenon of negative collaboration (i.e., 1 + 1 < 2).

How to design a flexible strategy to select proper auxiliary infor-

mation and alleviate the negative collaboration towards a better

recommendation is still an interesting and open question. Unfor-

tunately, few works have addressed this challenge in sequential

recommendation.

In this paper, we introduce aMulti-AgentRL-based Information

Selection Model (named MARIS) to explore an effective collabora-

tion between different kinds of auxiliary information and sequential

signals in an automatic way. Specifically, MARIS formalizes the

auxiliary feature selection as a cooperative Multi-agent Markov

Decision Process. For each auxiliary feature type, MARIS resorts

to using an agent to determine whether a specific kind of auxil-

iary feature should be imported to achieve a positive collabora-

tion. In between, a QMIX network is utilized to cooperate their

joint selection actions and produce an episode corresponding an

effective combination of different auxiliary features for the whole

historical sequence. Considering the lack of supervised selection

signals, we further devise a novel reward-guided sampling strat-

egy to leverage exploitation and exploration scheme for episode

sampling. By preserving them in a replay buffer, MARIS learns the

action-value function and the reward alternatively for optimization.

Extensive experiments on four real-world datasets demonstrate
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Figure 1: Performance comparison in terms of Recall@10 between
GRU4Rec and its context-enhanced models (e.g., GRU4RecF , KSR,
and KERL) on Beauty dataset. For each context-enhanced model,
the pink bar represents the proportion that both GRU4Rec and its
enhanced models recommended correctly, while the blue bar repre-
sents the enhanced models recommended correctly but GRU4Rec
failed.

that our model obtains significant performance improvement over

up-to-date state-of-the-art recommendation models.
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1 INTRODUCTION
Recent years have witnessed the flourishing development of sequen-

tial recommendation [18, 42, 45]. In this task, sequential dependen-

cies are critical signals that are proven to be useful [5, 8]. Following

this line, many models are designed to extract sequential signals

to infer users’ purchase intentions for effective recommendation.

However, as the collective behaviors of users are likely to be limited

and fragmentary, these models usually suffer from data sparsity

problem. These coarse-grained sequential patterns then become the
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bottleneck of further pushing the frontier of the recommendation

performance.

To alleviate the sparsity problem, many research efforts have

been devoted to exploit auxiliary features like textual descriptions[23],

visual images[14] and knowledge graph [19]. A common paradigm

of these solutions is to transform these heterogeneous information

into generic feature vectors, which are fed into a supervised learning

model [17] together with sequential representations to predict the

user’s next choice. Although these methods have provided promis-

ing performance, a critical deficiency is that their integration strat-

egy may weaken the benefits of sequential signals. The noisy nature

of these heterogeneous features and their adverse interference may

finally result in a negative collaboration. To verify our assumption,

we select one sequential recommender (e.g., GRU4Rec [16]), its

several context-enhanced models (e.g., GRU4RecF [17], KSR [19],

and KERL [43]), and compare their performance on a real-world

dataset (Beauty dataset from Amazon). The results are analyzed in

Fig. 1.

We can see that these context-enhanced recommenders (e.g.,
GRU4RecF [17], KSR [19], and KERL [43] ) perform better than

GRU4Rec. However, more than 30% items that can be recommended

successfully by GRU4Rec now failed in context-enhanced mod-

els. This obvious divergence between two types of recommenders

demonstrates that the ineffective integration strategy inevitably

overwhelms the benefits of sequential signals. Fig. 2 illustrates an

example for this scenario. Here, we choose to exploit auxiliary in-

formation from three different sources. It is obvious to see that

some auxiliary features are irrelevant to enhance the user’s intent

understanding, which could introduce significant semantic corrup-

tion. Hence, it is necessary to design a flexible selection strategy

to select proper auxiliary information, and further guarantee their

effective collaboration over sequential signals and different kinds

of auxiliary features for better recommendation.

Although it is appealing in theory, it is non-trivial to realize

an effective collaboration strategy without any supervision signal.

Recently, some attention-based approaches are proposed [34, 48]

to automatically assign different weights on each kind of auxil-

iary features in terms of their relevance estimation. However, the

accumulation of potential noise may still significantly complicate

the sequence learning process, as demonstrated in Fig. 1. How to

automatically select different auxiliary information and further

integrate them for better recommendation is an interesting and

challenging problem.

In this work, we re-investigate the utility of different kinds of aux-

iliary information. Specifically, we propose aMulti-AgentRL-based
Information Selection Model (named MARIS) to automatically se-

lect proper auxiliary feature combination that delivers an effective

collaboration. In detail, we formalize the auxiliary feature selection

as a cooperative Multi-agent Markov Decision Process. For each

auxiliary information type, MARIS designs an agent to determine

whether the information should be kept to enrich the contextual

information of the historical sequence. Here, a QMIX Network is

utilized to cooperate with their joint selection actions [32]. Consid-

ering the lack of supervised selection signals, we further devise a

novel reward-guided sample strategy for optimization under an ex-

ploitation and exploration scheme: 1) MARIS first samples a series

of potential high-quality episodes according to the QMIX network

fight, evil, 
superhero
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escape

science fiction

heroes,
army, fight

superhero,
terrorist

science fiction

Spider-Man Man Iron Man Iron Man

textual information knowledge information

interaction sequence target item

visual information

science fiction science fiction

Figure 2: An example to illustrate the contextual information se-
lection for better recommendation.

by a ranking function guided by the reward; 2) By keeping those

high-quality episodes in a replay buffer, MARIS utilizes a Double

Q-learning for efficient model optimization.

We construct extensive experiments on four datasets with a

series of competitive baselines. Experimental results show that our

proposed MARIS can significantly outperform all the baselines in

multiple metrics. To summarize, the contributions of this paper are

listed as follows:

• We formalize the auxiliary feature selection into a Multi-

agent Markov Decision Process, and further utilize a QMIX

network to cooperate their joint selection actions. To the

best of our knowledge, this is the first work of consider-

ing the collaboration between different kinds of auxiliary

information under a unified model.

• We propose a novel reward-guided sampling strategy to

exploit and explore high-quality episodes. By maintaining

episodes in a replay buffer, a Double Q-learning is utilized

to guarantee the effectiveness and efficiency of the learning

procedure.

• Extensive experiments on four real-world datasets demon-

strate that our model obtains significant performance im-

provement over both the sequential and context-enhanced

recommendation models.

2 RELATEDWORK
In this section, we provide a brief overview of the related work from

three perspectives, including sequential recommendation, context-

aware recommendation, and multi-agent reinforcement learning

respectively.

Sequential Recommendation. Sequential recommendation strives

to capture meaningful sequence patterns more efficiently. Early

works mainly utilized Markov chain models [36, 44] to capture

lower-order sequential dependencies. With the prosperity of deep

models, Recurrent Neural Networks [16, 24, 27] and self-attention

models [7, 20, 21, 38] have been adopted in several sequential model-

ing tasks to address the limitations in Markov models. For example,

Hidasi et al.[16] applied Gated Recurrent Units (GRU) to model

the whole session for a more accurate recommendation. Liu et al.
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[27] proposed a short-term memory attention network by changing

the recurrent encoder into an attention layer, which can further

reduce the deviation in the time series. Recently, there are also some

pre-training methods [28, 50] to derive the intrinsic data correla-

tions for improving sequential recommendation. Though effective,

these methods are usually challenged in handling limited user-item

interactions.

Context-aware Recommendation. Context-aware Recommen-

dation aims to leverage rich context information to improve the

recommendation performance [40]. To fully exploit interactions

among these features, previous works usually utilized matrix factor-

ization technique [12, 14] for context modelling, such as libFM [35]

and tensor factorization [6, 12]. Recently, deep learning techniques

have also been utilized for context modelling. For example, Zhang

et al. [47] integrated both structural, textual, and visual knowledge

to jointly learn item representations. Wang et al. [41] modelled the

evolution of different relations’ effects with time, and incorporated

such information into item embeddings. More recently, several

studies also proposed to improve the sequential recommendation

performance by integrating contextual information [25, 26, 34, 48].

Though effective, to the best of our knowledge, seldom works have

considered the impact of sequential properties when introducing in-

appropriate contexts. A coarse fusion strategy may inevitably bring

conflicts over sequential and contextual properties, and decrease

the recommendation performance.

Multi-agent Reinforcement Learning. Multi-agent reinforce-

ment learning (MARL) is a group of agents (or decision-makers)

that interact with each other and their operating environment to

achieve goals in a cooperative or competitive manner. MARL has

made a breakthrough in recent years due to its ability to solve com-

plex real-world problems, such as resource allocation in wireless

networks, traffic signal control, flood monitoring, network rout-

ing, etc. These methods can largely be divided into policy-based

and value-based methods [15]. Policy-based methods are promising

for scaling to large action spaces, which try to maximize the fu-

ture accumulated rewards by performing gradient ascent in policy

space. For example, Lowe et al.[29] and Foerster et al.[11] typi-

cally use a centralised critic to estimate the gradient for a set of

decentralised policies. Different from the policy-based methods, in

value-basedmethods, value decomposition [4] is widely used. These

methods learn individual Q-value functions for each agent, which

are combined with a learnable mixing function to produce joint

action values. For example, Sunehag et al.[39] utilized an arithmetic

summation as the mixing function. Rashid et.al[32, 33] proposed a

non-linear monotonic factorization structure. In our work, we aim

to utilize MARL to leverage the collaboration between sequential

and contextual properties.

3 PRELIMINARY

Notations. LetU denote a set of users and I denote a set of items,

where |U| and |I | are the numbers of users or items. For each user

𝑢 ∈ U, we use 𝑖𝑢
1:𝑡

= {𝑖𝑢
1
, 𝑖𝑢
2
, · · · , 𝑖𝑢𝑡 } to represent the interaction

sequence of items, where 𝑖𝑢
𝑘
represents the item that𝑢 has interacted

with at 𝑘-th time step. In addition to users’ interaction histories,

Agent 𝒂(𝓝)

. . .

Environment

action 𝒂𝒌
(𝓝)

action 𝒂𝒌
(𝟏)

Agent 𝒂(𝟏)
. . .

reward 𝒓𝒌
observation 𝒐𝒌

(𝟏)

reward 𝒓𝒌
observation 𝒐𝒌

(𝓝)

. . .

𝒓𝒌&𝟏, 𝒐𝒌&𝟏
(𝓝)

𝒓𝒌&𝟏, 𝒐𝒌&𝟏
(𝟏)

Figure 3: The overall architecture of MMDP.

we assume that there are totally 𝑚 kinds of available auxiliary

information, denoted as C = {𝑐1, 𝑐2, · · · , 𝑐𝑚}.

Task Definition. Based on these notations, our task of sequential
recommendation aims to predict the next item that the user 𝑢 is

likely to interact with at the (𝑡+1)-th step given both the interaction
sequence 𝑖𝑢

1:𝑡
and the auxiliary information C.

Multi-agent Markov Decision Process. We first briefly intro-

duce MMDP [3], and the framework of MMDP is shown in Fig. 3.

The MMDP can be described as a stochastic game 𝐺 , repre-

sented as a tuple 𝐺 = {N ,S,A,O,T , 𝑟 , 𝛾}, where N represents

the agent count; S is the set of states and 𝑠𝑘 ∈ S represents the

𝑘-th state; O = {𝑂 (1) ,𝑂 (2) , · · · ,𝑂 (N) } is the set of observations;
A = {𝐴(1) , 𝐴(2) , · · · , 𝐴(N) } is the collection of action sets, with

𝑎
( 𝑗)
𝑘
∈ 𝐴( 𝑗) being 𝑗-th agent’s action at 𝑘-th time step; T is the

state transition function: T : S × A → S; by their joint actions

𝑎𝑘 = {𝑎1
𝑘
, 𝑎2

𝑘
, · · · , 𝑎N

𝑘
} and discount factor 𝛾 , all agents share the

same reward function 𝑟 (𝑠𝑘 , 𝑎𝑘 ).

4 METHODOLOGY
In this section, we introduce the proposed Multi-Agent RL-based
Information Selection Framework (MARIS) in detail, and the over-

all architecture of MARIS is presented in Fig 4. In the following,

we start with a Multi-Agent Markov Decision Process (MMDP)

formulation for our task, then present our reward-guided sampling

strategy for model optimization. For simplicity, we describe the

approach for a single user, and we drop the superscript of 𝑢 in the

notations for ease of reading.

4.1 MMDP for Auxiliary Information Selection
We use MMDP to frame the auxiliary information selection process

for sequential recommendation. In a MMDP, each agent is responsi-

ble for a specific auxiliary information type, aiming to interact with

the environment at discrete time steps. We first adopt a standard

Gated Recurrent Unit [16] to encode the previous item interaction

sequence 𝑖1:𝑡 , denoted as h𝑒0 . Based on the initial h𝑒
0
, we aim to feed

it to each agent to explore useful auxiliary information to enhance

its semantics. Specifically, given agent 𝑗 , the 𝑘-th step observation

embedding can be written as:

o( 𝑗)
𝑘

= 𝑀𝐿𝑃 (h𝑒
𝑘−1 + c

( 𝑗)
𝑘
) (1)

where c( 𝑗)
𝑘

is the embedding of auxiliary information 𝑐
( 𝑗)
𝑘

, h𝑒
𝑘−1 is

the enhanced sequential representation at (𝑘 − 1)-th step. Based
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Figure 4: The overall architecture of Multi-Agent RL-based Information Selection Framework (MARIS for short). MARIS formalizes the
auxiliary information selection process into a MMDP and utilizes a reward-guided sampling strategy to sample episodes for efficient opti-
mization(Best viewed in color).

on the observation o( 𝑗)
𝑘

, we can calculate its action-value net-

work 𝑄𝜋 ( 𝑗 ) (𝑜 ( 𝑗)
𝑘

, 𝑎
( 𝑗)
𝑘
) to make actions, where a( 𝑗)

𝑘
∈ {retain=1,

neglect=0}. In our work, the retain action indicates that the auxil-

iary information should be preserved, while a neglect action means

that the auxiliary information should be discarded. According to

such a design, our model can focus on the valuable auxiliary infor-

mation, while avoiding the contamination of irrelevant auxiliary

information.

After selecting proper auxiliary information at 𝑘-th step for each

agent, we can use the following function to fuse proper auxiliary

information into sequential representation to enhance its semantics:

h𝑒
𝑘
= 𝐺𝑅𝑈

(
h𝑒
𝑘−1,

∑
𝑗

𝐼 (𝑎 ( 𝑗)
𝑘

= 1)c( 𝑗)
𝑘

)
(2)

where 𝐼 (·) represents the identity function.

Up to now, we have designed decentralised policies for auxiliary

information selection, which can operate effectively after giving a

reward. However, such a design cannot explicitly represent interac-

tions between the agents and may not converge, as each agent’s

learning is confounded by the learning and exploration of others.

Inspired by [32], we further utilize QMIX to cooperate the actions

centralised in an end-to-end fashion. The main advantage of QMIX

is that it employs a network that estimates joint action-values as a

complex non-linear combination over per-agent values. Specifically,

we formulate the agent’s state s𝑘 as follows:

s𝑘 = 𝑀𝐿𝑃
©­«h𝑒𝑘−1 +

∑
𝑗

c( 𝑗)
𝑘

ª®¬ (3)

Given the state 𝑠𝑘 and the corresponding action-value of all

agents, QMIX network utilizes the following function to obtain the

joint action value 𝑄𝜋 (𝑠𝑘 , 𝑎𝑘 ):
z = 𝐸𝐿𝑈

(
q · |𝑀𝐿𝑃 (s𝑘 ) | +𝑀𝐿𝑃 (s𝑘 )

)
𝑄𝜋 (𝑠𝑘 , 𝑎𝑘 ) = z · |𝑀𝐿𝑃 (s𝑘 ) | +𝑀𝐿𝑃

(
𝑅𝑒𝐿𝑈

(
𝑀𝐿𝑃 (s𝑘 )

) ) (4)

where q = [𝑄𝜋 (1) (𝑜 (1)
𝑘

, 𝑎
(1)
𝑘
), · · · , 𝑄𝜋 (N) (𝑜 (N)

𝑘
, 𝑎
(N)
𝑘
)], | · | is an ab-

solute operation to guarantee its weights non-negative, 𝐸𝐿𝑈 (·) [9]
and 𝑅𝑒𝐿𝑈 (·) [1] are activation functions.

According to Eq.4, QMIX can fully leverage the joint and in-

dividual action values, and then collaborate agents’ actions for a

better cooperation. Given the joint action-value, the loss function

is written as:

L(Θ) =
∑
𝑢

𝑡∑
𝑘=1

[
𝑟 (𝑠𝑘 , 𝑎𝑘 ) + 𝛾 max

𝑎𝑘+1
𝑄𝜋 (𝑠𝑘+1, 𝑎𝑘+1) −𝑄𝜋 (𝑠𝑘 , 𝑎𝑘 );Θ

]
2

(5)

where Θ are all parameters in the learning space.

As in our task, we tend to give a high probability to a good

enhanced sequential representation h𝑒𝑡 that leads to the target item
𝑖𝑡+1 together with its proper auxiliary information combination. To

this end, we only consider to give a reward for the final state 𝑠𝑡 .

By enumerating all possible auxiliary information combinations

of item 𝑖𝑡+1, we select the best matching with h𝑒𝑡 as the terminal

reward 𝑅𝑡 via a softmax function:

𝑅𝑡 =
𝑒𝑦𝑡+1∑
𝑖∈I 𝑒𝑦𝑖

;𝑦𝑖 = max

Y𝑙
𝑖
∈Y𝑖

(
h𝑒𝑡 · (v𝑖 +

∑
𝑐
( 𝑗 )
𝑖
∈Y𝑙

𝑖

c( 𝑗)
𝑖
)
)

(6)

where 𝑟 (𝑠𝑡 , 𝑎𝑡 )=𝑅𝑡 , v𝑖 denotes the embedding of the 𝑖-th item;

Y𝑖 denotes all the possible auxiliary information combination of

the 𝑖-th item, Y𝑙
𝑖
∈ Y𝑖 . The total size of Y𝑖 is 2N .

4.2 Reward-guided Sampling Strategy
In the previous section we introduce MMDP to frame the auxiliary

information selection process, and in the learning stage, we opti-

mize our framework according to Eq. 5. However, in the learning

stage, we found the performance of our model may not always be

stable. The reason lies in the random episode sampling process.

Due to the lack of supervised signals, the framework is difficult
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to sample high-quality episodes. The low-quality episodes bring

challenges for a better optimization. It is necessary to design an

effective sampling strategy to assist its optimization. To this end, we

aim to design a reward-guided sampling strategy of leveraging both

exploration and exploitation for sampling episodes. By maintaining

the high-quality episodes in a replay buffer, we learn our model

efficiently.

Empower the sampling strategy to explore.We first encourage

our model to explore more possibilities. In order to learn the action-

value network effectively, it is necessary to explore episodes that

are different from the previous sampled. Therefore, we utilize the

following function to guarantee its exploration ability:

𝑅𝑎𝑛𝑘𝑒𝑥𝑝𝑙𝑜𝑟𝑒 (h𝑒𝑡 ) = 1 −
(h∗ · h𝑒𝑡 )
|h∗ | · |h𝑒𝑡 |

(7)

where h𝑒𝑡 is embedding of the current sampled episode, h∗ is the
representation of the episode stored in the replay buffer, which

owns the highest ranking score. By this, we tend to give a high

score to the sampled episode that is different with previous ones.

According to such a design, we urge our model to explore more

search space for effective optimization.

Empower the sampling strategy to exploit.Moreover, to gain

the better performance of the recommendation, we hope that our

model can well utilize previous high-quality episodes to make the

learning process more efficiently, we then design an exploiting

Algorithm 1 Learning algorithm for MARIS

Input: user-item interaction sequences, all auxiliary information for items,

replay buffer , all parameters in the learning space Θ
1: Initialize Θ← random values;

2: Initialize the replay buffer by two types of episodes.(one episode con-

tains no auxiliary information, and the other one preserves all auxiliary

information);

3: repeat
4: for 𝑢 in U do
5: Obtain h𝑒

0
by encoding interaction sequence 𝑖𝑢

1:𝑡

6: for Sample-steps do
7: Sample episodes according to QMIX

8: Obtain h𝑒𝑡 according to Eq. 2

9: Calculate 𝑅𝑎𝑛𝑘 (h𝑒𝑡 ) according to Eq. 9

10: Rank episodes by 𝑅𝑎𝑛𝑘 (h𝑒𝑡 ) and preserve top-n episodes in

replay buffer

11: end for
12: for Train-steps do
13: Sample each episode from the replay buffer

14: for k=1 to t do
15: Obtain s𝑘 according to Eq.3

16: Obtain𝑄𝜋 (𝑠𝑘 , 𝑎𝑘 ) according to Eq.4

17: end for
18: Calculate 𝑅𝑡 according to Eq. 6

19: According to Eq. 5, learn the action-value and the reward 𝑅𝑡

alternatively for optimization

20: end for
21: end for
22: until converge
23: return all parameters in Θ

Table 1: Statistics of datasets for experiments (a.v.l=average se-
quence length).

Dataset Beauty CellPhones Clothing Movies

Users 22,363 27,879 39,387 123,960

Items 12,101 10,429 23,033 50,052

Interactions 198,502 194,439 278,677 1,697,533

Entities 14,422 11,590 25,322 51,830

Images 12,009 10,202 22,879 49,654

Texts 12,094 10,416 23,032 49,304

a.v.l 8.88 6.97 7.08 13.69

strategy written as follows:

𝑅𝑎𝑛𝑘𝑒𝑥𝑝𝑙𝑜𝑖𝑡 (h𝑒𝑡 ) = 𝑅𝑡 ×
(h∗ · h𝑒𝑡 )
|h∗ | · |h𝑒𝑡 |

(8)

As we can see, such an exploiting strategy advocates our model to

exploit episodes that are similar to the high-quality ones.

We can flexibly replace the cosine function with other forms of

similarity measurements. By plugging Eq. 7 and Eq. 8, we compute

the reward by considering episodes’ both exploration and exploita-

tion abilities. By plugging them together, we can derive the final

sampling strategy:

𝑅𝑎𝑛𝑘 (h𝑒𝑡 ) = 𝛼 ×𝑅𝑎𝑛𝑘𝑒𝑥𝑝𝑙𝑜𝑟𝑒 (h𝑒𝑡 ) + (1−𝛼) ×𝑅𝑎𝑛𝑘𝑒𝑥𝑝𝑙𝑜𝑖𝑡 (h𝑒𝑡 ) (9)

According to Eq. 9, we treat the reward 𝑅𝑡 as the weakly su-

pervised signal to direct the episode sampling process. By tuning

the hyper-parameter 𝛼 , we ensure a suitable trade-off between

exploration and exploitation for an efficient episode sampling.

4.3 Learning and Discussion
Based on the reward-guided sampling strategy, our learning proce-

dure is as follows: (1) For each user-item interaction sequence, we

prepare a replay buffer to maintain its high-quality episodes. The

replay buffer was first initialized by feeding two specific episodes:

one episode contains no auxiliary information, while the other one

keeps all auxiliary information, and their ranking scores are ob-

tained according to Eq. 6. (2) Based on the introduced two episodes,

we aim to find a series of compromise combination approaches of

them. Specifically, by treating them as lower-bounds, we repeat the

sampling process according to Eq. 9 to explore and exploit high-

quality episodes. By ranking these episodes according to Eq. 9, we

preserve top-n episodes in the replay buffer. Based on the sam-

pled high-quality episodes. Given the loss function Eq. 5, we learn

the reward 𝑅𝑡 and the joint action-value 𝑄𝜋 (·) alternatively for

optimization. The overall algorithm is given in Alg. 1.

The major novelty of the MARIS model lies in that MARIS for-

malizes the auxiliary information selection process into a MMDP,

and a QMIX network is further introduced to coordinate their col-

laboration, such a factor has been missing in previous sequential

recommendation models [26, 34], which may be challenged by the

conflicts over properties when injecting various information. In ad-

dition, MARIS designs a reward-guided sampling strategy to lever-

age both exploration and exploitation processes for high-quality

episodes.

In the recommendation procedure, with the learned MARIS,

given a user and his/her interaction sequence, for each agent, we
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Table 2: Performance comparison between baselines and MARIS (all values in the table are percentage numbers with % omitted). The best
performance of each column is highlighted in boldface. Symbol ∗ denotes the best baseline. Symbol ▲ denotes the relative improvement of
our results against the best baseline, which are consistently significant at 0.05 level.

Dataset Metric

Sequential Models Context-aware Sequential Models

▲%
FPMC GRU4Rec SASRec GRU4RecF KERLF SASRecF MFGAN NOVA-BERT MARIS

Beauty

Recall@5 9.25 10.87 15.27 13.41 17.82 17.55 18.38 18.97
∗ 21.17 11.60

Recall@10 15.38 16.64 20.98 19.62 23.66 24.14 25.22 25.73
∗ 28.73 11.65

NDCG@5 6.25 7.05 10.96 9.19 11.59 11.98 12.26 13.66
∗ 14.93 9.30

NDCG@10 7.81 8.91 12.80 11.19 13.79 14.11 14.47 15.85
∗ 17.37 9.59

CellPhones

Recall@5 13.70 14.77 17.69 15.59 18.40 18.55 19.36 20.82
∗ 24.30 16.71

Recall@10 20.02 20.74 24.16 23.12 26.02 26.13 26.73 29.28
∗ 32.92 12.43

NDCG@5 9.13 10.20 11.71 10.46 12.64 13.23 13.56 14.36
∗ 17.24 20.06

NDCG@10 11.16 12.14 14.36 12.88 15.60 15.40 15.93 17.09
∗ 20.02 17.14

Clothing

Recall@5 5.58 6.10 7.62 8.24 11.14 12.74 13.21 15.15
∗ 16.69 5.41

Recall@10 8.47 9.42 10.73 12.66 16.86 18.62 20.10 21.06
∗ 23.91 13.53

NDCG@5 3.74 4.26 5.34 5.45 7.63 8.51 9.06 10.51
∗ 11.53 9.51

NDCG@10 5.12 4.89 6.34 6.87 10.38 11.34 11.88 12.62
∗ 14.15 12.12

Movies

Recall@5 25.19 26.89 28.56 28.77 30.77 30.15 31.37 33.15
∗ 37.08 11.86

Recall@10 34.44 35.37 37.22 38.53 40.53 39.11 41.10 42.61
∗ 46.68 9.55

NDCG@5 17.48 19.57 20.79 20.23 21.94 22.21 23.17 24.25
∗ 27.83 14.76

NDCG@10 20.47 22.31 23.58 23.39 25.09 25.60 26.32 27.31
∗ 30.94 13.29

scan each item and select the corresponding action according to

the following function:

𝑎
( 𝑗)
𝑘

= argmax

𝑎
𝑄𝜋 ( 𝑗 ) (𝑜 ( 𝑗)

𝑘
, 𝑎) (10)

After this, we aggregate the enhanced sequential representa-

tion h𝑒𝑡 according to Eq. 2. Based on the learned h𝑒𝑡 , we rank the

items according to Eq. 6, and select the top-𝑁 results as the final

recommendations.

5 EXPERIMENT
In this section, we evaluate MARIS by comparing it with sequential

and context-aware recommenders. We begin by introducing the

experimental setup and analyze the experimental results.

5.1 Experimental Setup

Dataset.We conduct our experiments on the commonly-used Ama-

zon dataset concerning its rich auxiliary information. To analyze

our model’s capability, we select four different categories, including

Beauty, Clothing, Cell Phones and Movies. For these categories,

we remove users and items with fewer than 5 related actions. The

statistics of four datasets are shown in Table 1. We follow [47] and

consider three different types of auxiliary information, which are

visual, textual, and knowledge information of items. For the textual

information, we consider both the titles and descriptions of items.

Baselines.To evaluate the effectiveness of our approach, We com-

pareMARIS against two types of baselines, including three sequential-

based models and five context-enhanced sequential models. The

sequential-based models include:

(1) FPMC [36]: FPMC is a shallow model that combines matrix

factorization and factorized first-order Markov chains for

sequential recommendation.

(2) GRU4Rec [16]: GRU4Rec is a session-based recommendation,

which utilizes GRU unit to capture users’ long sequential

behaviors for recommendation.

(3) SASRec [21]: SASRec is a self-attention based sequential

recommendation model, which uses the multi-head attention

mechanism to recommend the next item.

For context-aware sequential models, we consider the following

five baselines:

(1) GRU4RecF [17]: proposes to incorporate auxiliary informa-

tion into GRU networks for improving the sequential recom-

mendation. We concatenate the pre-trained auxiliary vectors

and item embeddings as the input of GRU.

(2) SASRecF: Similar to GRU4RecF, we extend SASRec with the

concatenation of item embeddings and the pre-trained auxil-

iary information representations.

(3) KERLF: KERL[43] is a knowledge-enhanced model for se-

quential recommendation, and we extend it by replacing the

kg information with the pre-trained auxiliary information.

(4) MFGAN [34]: MFGAN designs a multi-discriminator struc-

ture that can decouple different auxiliary information to

improve the recommendation performance.

(5) NOVA-BERT [26]: NOVA-BERT uses a non-invasive self-

attention mechanism to make use of side information for a

better recommendation.

Evaluation Metric. In order to present a comprehensive evalua-

tion, for each user, we sort his records according to the timestamp

to form the interaction sequence. Based on the sorted sequences,

we hold out the last item of each sequence as the test data and the

penultimate item of each sequence as the validation data. The rest

data is treated as the training data. We set 1, 000 negative items

for each ground-truth item considering both the computation effi-

ciency [43] and the estimation quality [22].
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Figure 5: Performance curves of MARIS and its variant MARIS¬𝑠 with the varying iterations on four datasets.

We employ the commonly used Recall@N, NDCG@N as our

evaluation metrics(N=5/10). Recall@𝑁 measures the percentage of

target items appearing in the top-𝑁 results, and NDCG@𝑁 takes

the ranking position in the top-𝑁 list into account. We perform

significant tests using the paired t-test. Differences are considered

statistically significant when the 𝑝-value is lower than 0.05.

Parameter Settings. For fair comparison, we adopt the following

settings for all methods: the batch size is set to 256; all embedding

parameters are randomly initialized in the range of (0, 1); the model

dimension is tuned in the range of[32, 64, 96, 128, 256]. For KERL1
andMFGAN

2
, we use the source code provided by their authors. For

other methods, we implement them by RecBole [49]. We optimize

them according to the validation sets.

For our model, we implement it based on PyMARL[37]. The dis-

count factor 𝛾 is set to 0.99, 𝛼 is set to 0.4. In the sampling stage, we

preserve Top-10 episodes in our replay buffer for each sequence. For

textual information, we train the words according word2vec [31],

and average them as the textual representation; for knowledge

information, we use transE [2] to obtain their embeddings; for vi-

sual information, we apply PCA to reduce the initial embedding

provided by amazon[13, 30]. The embedding size of all auxiliary

information representations is set to 128.

5.2 Performance Comparison
In this section, we compare the performance of our model with

the baselines. The overall performance of our proposed MARIS

and the baselines are reported in Table 2. We have the following

observations:

For sequential recommendations, FPMC obtains the worst perfor-

mance. This is easy to understand as compared with other models,

the shallow model FPMC neither fully utilizes sequential dependen-

cies, nor injects extra auxiliary information to alleviate the sparse

problem. Comparing with FPMC, we found that both considering

sequential patterns (GRU4Rec) and utilizing the attention mech-

anism (SASRec) can improve the recommendation performance,

Similar results have also been shown in previous works [10, 19].

After introducing the auxiliary information, both GRU4RecF

and SASRecF perform better than their initial models GRU4Rec

and SASRec. It demonstrates the effectiveness of fusing side in-

formation to improve the recommendation performance. We find

that there is no consistent dominant between KERL𝐹 and SASRec𝐹 .

1
https://github.com/fanyubupt/KERL

2
https://github.com/ReyonRen/MFGAN

This observation also reveals that exploring more auxiliary infor-

mation and exploiting the enhanced sequential dependencies can

both bring benefits in their own way. Comparing with the context-

enhanced models GRU4Rec𝐹 , SASRec𝐹 , and KERL𝐹 , MFGAN and

NOVA-BERT take advantage of more complex strategies of fusing

heterogeneous information, and achieve the better performance.

Finally, our proposed approach MARIS achieves the best perfor-

mance among all the methods on four datasets. The major contri-

bution of MARIS is that it considers a novel auxiliary information

selection task. By formalizing the proposed task into a MMDP

and further utilizing a QMIX network to coordinate collaboration

among agents, MARIS designs a novel reward-guided sampling

strategy for an efficient and effective optimization. Comparing with

NOVA-BERT which utilizes a transformer to introduce proper aux-

iliary information for information aggregation, our MARIS utilizes

a hard-attention strategy for auxiliary information selection. The

result demonstrates that MARIS is more able to filter the irrel-

evant information, and cooperates this information for a better

performance. Take the Cell Phones dataset as an example, when

comparing with the best baseline (i.e., NOVA-BERT), the perfor-

mance improvement of MARIS in terms of relative value is around

12.43% and 17.14% on Recall@10 and NDCG@10.

5.3 Ablation Study
In this section, we conduct experiments to analyze variants of

MARIS via ablation study.

5.3.1 Analysis on QMIX network. Recall MARIS utilizes a QMIX

network to coordinate the collaboration of different agents, in this

section we aim to analyze whether such a design can bring benefits.

Specifically, we directly remove the QMIX and sum the Q-value

of each agent as the final joint action-value. According to such a

design, our MARIS degrades to VDN [39], and we denote the new

variant as MARIS𝑠𝑢𝑚 . The results of MARIS and MARIS𝑠𝑢𝑚 on four

datasets are shown in Table 3.

We can see thatMARIS performs obviously better thanMARIS𝑠𝑢𝑚 .

It reveals that using a simple approach to coordinate the collabo-

ration of multi agents is not an ideal choice. While owning to the

QMIX network to coordinate agents’ actions, our MARIS can di-

rectly leverage the joint and individual action-values to coordinate

their collaboration for a better performance.

5.3.2 Analysis on Reward-guided sampling strategy. In MARIS, we

design a reward-guided sampling strategy to obtain high-quality
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Figure 6: Comparisons between GRU4Rec and its two enhanced models. The red bar represents the performance of GRU4Rec. The purple
bar represents the overlap between GRU4Rec and GRU4Rec𝐹 , while the blue grid represents the overlap between GRU4Rec and MARIS.

Table 3: Performance comparison of MARIS and MARIS𝑠𝑢𝑚 over
four datasets. All numbers in the table are percent numbers with %

omitted. The Best performance is in bold font.

Dataset Metrics MARISsum MARIS

Beauty

Recall@5 18.51 21.17
Recall@10 25.34 28.73
NDCG@5 12.40 14.93
NDCG@10 14.68 17.37

CellPhones

Recall@5 21.84 24.30
Recall@10 29.27 32.92
NDCG@5 14.87 17.24
NDCG@10 17.49 20.02

Clothing

Recall@5 15.19 16.69
Recall@10 21.84 23.91
NDCG@5 10.12 11.53
NDCG@10 12.40 14.15

Movies

Recall@5 35.07 37.08
Recall@10 44.34 46.68
NDCG@5 26.07 27.83
NDCG@10 28.98 30.94

episodes for optimization. To verify the effectiveness of such a sam-

pling strategy, we also make some degradation of MARIS. Specifi-

cally, for each interaction sequence, without using Eq. 9, we sam-

ple episodes randomly to fill the replay buffer. We then use these

episodes to learn our model. The new variant of MARIS is named

MARIS¬𝑠 . Fig. 5 shows the performance curve ofMARIS andMARIS¬s
on four datasets.

We can see that comparing with MARIS, MARIS¬𝑠 is difficult to

converge on all four datasets. It is easy to understand that a random

sampling strategy is difficult to obtain valuable episodes due to

the huge search space, the low-quality episodes then bring diffi-

culties for a robust optimization. While comparing with MARIS¬𝑠 ,
MARIS performs better and converges faster. It demonstrates the

correctness and necessity of the reward-guided sampling strategy

in MARIS. By leveraging the exploration and exploitation scheme to

sample episodes, MARIS maintains a series of well-ranked episodes

in the replay buffer, forcing the model to optimize efficiently.

5.4 Effect of the Hyper-parameter 𝛼
In MARIS we adopt a reward-guided sampling strategy for efficient

learning of the proposed MARIS. One important parameter in this

procedure is the hyper-parameter 𝛼 that leverages the exploration

and exploitation scheme. In this experiment, we study the impact

of the 𝛼 on the final performance. Specifically, We vary the value

of 𝛼 from 0 to 1 on the Movies dataset, and Fig. 7 shows the testing

performance of MARIS in terms of NDCG@10 against 𝛼 on Movies

dataset.

We can see that when 𝛼=1, MARIS achieves the worst perfor-

mance. It demonstrates that a pure exploration strategy does not

fit MARIS, exploring too many low-quality episodes cannot drive

MARIS to obtain a better performance. While 𝛼 decreases, the

testing performance of MARIS in terms of NDCG@10 increases.

However, if we further decrease 𝛼 , the overall performance de-

creases. When 𝛼=0, MARIS emphasizes on exploiting the episodes

that are similar to the previous ones. Exploring a small search space

also fails to learn MARIS well. These observations verify the under-

lying intuition of our model design, where we need an appropriate

weighting value to balance the exploration and exploitation scheme.

Therefore, to trade-off between these two factors, we set 𝛼=0.4 for

the best performance in the experiments.

5.5 Feeding Other Sequential Recommendation
Models to MARIS

In MARIS, the initial sequential representation h𝑒
0
can be obtained

by other recommendation models. In this section, we conduct exper-

iments to check whether MARIS can obtain further improvements

when merging other models. Specifically, we select four widely

used sequential recommenders including DREAM[46], NARM[24],

STAMP[27], and SASRec[21]. For each model, we obtain its sequen-

tial representation, and further feed it to our MARIS to analyze the

performance of MARIS.

The results of NDCG@10 on Movies dataset are illustrated in

Figure 8. We can see that by replacing the initial representation
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Figure 7: Performance variation in terms of NDCG@10 against 𝛼
on the Movies dataset, where 𝛼 varies from 0 to 1.
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h𝑒
0
to other sequential models, the performance of MARIS are still

improved. It demonstrates the effectiveness and flexibility of our

model, which can obtain benefits when combining with various of

sequential recommendations.

5.6 Further Analysis on MARIS
In MARIS we formalize the auxiliary information selection task into

a MMDP, and utilize a QMIX network to coordinate their actions. In

this section, we further analyze the negative effects that the injected

auxiliary information brings to sequential dependencies in MARIS.

Considering MARIS uses a GRU Unit to aggregate its sequential

representation, we then select GRU4Rec𝐹 for a fair comparison.

According to compare the overlaps between GRU4Rec and its two

context-enhanced models (e.g. GRU4FRec𝐹 and MARIS), we want

to check whether MARIS would alleviate the negative collaboration.

The result is shown in Fig. 6.

We see that the overlap between GRU4Rec and MARIS is obvi-

ously larger than the overlap between GRU4Rec and GRU4Rec𝐹 .

Take the Beauty dataset as an example, we can see that MARIS cap-

tures 87.3% of instances that GRU4Rec can recommend correctly,

while for GRU4Rec𝐹 , the proportion decreases to 64%. The huge gap

between MARIS and GRU4Rec demonstrates the effectiveness of

our MARIS, which shows a good generalization ability in alleviating

the negative collaboration over different information.

5.7 Visualization Analysis
In this section, we analyze the significance of different combina-

tion types for a correct recommendation over each dataset, to un-

derstand how MARIS conducts automatic auxiliary information

selection by coordinating the actions of agents. Specifically, for

each interaction sequence that MARIS recommends correctly in

the testing set, we statistic the auxiliary information combination

type of each item in the interaction sequence. In our work we con-

sider the selection over 3 different auxiliary information types, thus

we have 8 combination types. Based on these types, we calculate

their percentages. The percentage distributions on four datasets

are shown in Fig. 9.

As we can see, nearly 40% of items select all three auxiliary types,

and the result is quite consistent on all four datasets. It demonstrates

() (v) (t) (k) (v,t) (v,k) (t,k) (v,t,k)

Beauty

Clothing

CellPhones

Movies 0.1

0.2

0.3

0.4

Figure 9: Distribution of different auxiliary information combina-
tion types on four datasets. The x-axis denotes the different con-
text combination types, t stands for textual information, v stands
for visual information, and k represents the knowledge. Each cell
indicates the frequency of its corresponding combination type.

the importance of auxiliary information, which also coincides with

the previous findings: introducing auxiliary information is a bene-

fit for improving the recommendation performance. However, we

find more than 25% of items choose visual and knowledge infor-

mation as to their best matching combinations. For the rest 35%

items, they distribute evenly on the other rest six combination types.

The diverse distribution on different selection types demonstrates

not all auxiliary information are needed for recommendation. It is

necessary to make a precise selection over different auxiliary infor-

mation. Overall, experimental results imply that MARIS is able to

coordinate the collaboration over agents so as to conduct automatic

model selection for sequential recommendation scenarios.

6 CONCLUSION
In this paper, we address an auxiliary information selection task

in sequential recommendation scenario. We formalize this task

into a MMDP, and propose aMulti-Agent RL-based Information

Selection Model (MARIS for short) to explore an effective collabora-

tion between different kinds of auxiliary information and sequential

signals in an automatic way. MARIS utilizes a QMIX network to

model the complex collaboration among various properties. Af-

ter this, a reward-guided sampling strategy is further designed to

leverage both exploration and exploitation scheme of sampling

high-quality episodes for optimization. With the ranked episodes

maintained in the replay buffer, MARIS optimizes the model effec-

tively. Experiments on four various datasets verify the effectiveness

of our proposed model.

To our knowledge, it is the first time of considering auxiliary in-

formation selection in sequential recommendation task. Currently,

our focus only considers the collaboration among three different

auxiliary information, we then coordinate their actions according

to a simple QMIX network, and there is much work to be done. In

the future, we aim to inject more auxiliary information, and further

utilize weakly supervised signals to better understand interactions

among these heterogeneous information for further improvement.
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