Pattern Recognition Letters 152 (2021) 10-17

Contents lists available at ScienceDirect ﬁ;ttern Recognition

RPR@Y

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Multimodal-adaptive hierarchical network for multimedia sequential n

recommendation

Check for
updates

Tengyue Han? Shaozhang Niu®*, Pengfei Wang"

2 Beijing Key Lab of Intelligent Telecommunication Software and Multimedia, Beijing University of Posts and Telecommunications, Beijing, 100876, China
bSchool of Computer Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China

ARTICLE INFO

Article history:

Received 1 December 2020
Revised 24 June 2021

Accepted 23 August 2021

Available online 14 September 2021

Edited by Prof. S. Sarkar

2008 MSC:
41A05
41A10
65D05
65D17

Keywords:
Multimedia

ABSTRACT

Recommender system has a pivotal role in electronic economy especially for the online shopping plat-
forms. Studies over the past two decades have proved that exploiting the inherent properties of items
contributes a lot to the accuracy of multimedia sequential recommendation. There is no doubt that mul-
timedia information including images and texts of a product have an impact on user’s purchase decision.
However, modeling user’s dynamic preferences for multimodal (visual and textual in this paper) informa-
tion over time is still a challenging problem. To solve this problem, we propose a Multimodal-Adaptive
Hierarchical Network (MAHN for short) for multimedia sequential recommendation, which includes a
hierarchical recurrent neural network and an information modulation module between the hierarchical
structure. Specifically, the hierarchical recurrent neural network achieves the re-selection of multimodal
information from the first layer to the second layer, the information modulation module realizes the se-
lection of each modal information at time step t based on the previous time steps. Finally, to improve
the generalization ability of our model, we adopt the multi-task training style to jointly optimize BPR loss
and reconstruction loss of multimodal information. Experiments are conducted on two real world public

Multimodal
Sequential recommendation
Multimodal-adaptive

datasets, and the results demonstrate that our model outperforms the other methods.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

There is a growing body of literature that recognizes the impor-
tance of multimedia recommendation especially for online shop-
ping platforms in recent years. Giving the user’s historical behav-
ior records, recommender system aims to predict the next com-
modity that the user will interact with. It has been proved that in-
corporating external knowledge to recommender system can con-
tribute to improving the performance of recommendation ([14]).
With the significant achievements made in multimodal machine
learning domain, recent trends in cross-domain learning have led
to a proliferation of studies that integrate different kinds of in-
formation from each modality to improve the performance in im-
age and video captioning ([15,18]), visual QA ([7,26]), text-to-image
generation ([20,25]) and recommender systems (|6]). It is promis-
ing to analyse the interactions in multimodal information for se-
quential recommendation. On the one hand, incorporating multi-
modal information of items can alleviate the sparse problem which
is caused by the limited explicit interactions; on the other hand,
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capturing sequential pattern of multimodal information can model
the user’s dynamic modality-specific preference, for example, color
and style (visual-modality), brand and price (textual-modality).
Many studies have explored the effects of incorporating multi-
media information such as images and texts to recommender sys-
tem. Prior works in recommendation can be divided into three
main categories coarsely, visual-based methods ([8,19]), textual-
based methods ([1,5]) and hybrid-based methods (|6]). Some of
these works try to enrich the representations of items by extract-
ing their image features or summarizing the salient properties
from reviews. Some other works try to model the user’s multi-
ple preference including visual preference or textual preference by
generalizing all items that the user has interacted with. There is no
doubt that these works are helpful to improve the performance of
the recommender system. Despite the success of the previous stud-
ies, capturing user’s dynamic multimodal preference in sequential
recommendation is still a challenging problem. Intuitively, multi-
modal information have different influence on a user at time step
t according to his (or her) historical behavior records before time t.
To explain this, we present an illustrative example in Fig. 1, where
a sequence of items purchased by a user. At the second to last
time step, this user may pay more attention to the item’s textual-
modality information (Nike) since he purchased a short sleeve of
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Fig. 1. A sequence of items purchased by a user. Each item is accompanied by an image and its title information.

Nike. At the last time step, the user may care more about the color
of socks since they match well with a pair of white sports shoes.

Although incorporating multimodal information with sequen-
tial recommendation has great importance, it's non-trivial to model
the sequential multimodal interactions and capture dynamic mul-
timodal preference for each user. To address the above problem,
we design a multimodal-adaptive hierarchical network (MAHN for
short), which can effectively model the sequential dynamic multi-
modal interactions including visual- and textual-modality. Specifi-
cally, the hierarchical recurrent neural network is designed to real-
ize the re-selection of multimodal information from the first layer
to the second layer. The information modulation module is de-
signed to select each modal information at time step t according
to historical multimodal information. Finally, to improve the gen-
eralization ability of our model, we adopt the multi-task training
style to jointly optimize BPR loss and reconstruction loss of multi-
modal information.

In this paper, we propose a new framework incorporating
mulitmodal information to sequential recommendation. Our main
contributions are listed as follows:

e — We design a multimodal-adaptive hierarchical network to
model the sequential patterns of multi-modalities and consider
different influences of various modalities at each time step in a
sequence. The hierarchical RNN-based network can capture fea-
tures from the bottom layer to the top layer, which models the
dynamic impact on users from multimodal information. Exten-
sive experiments are conducted on two public datasets, which
show that our method outperforms the other methods on Top-
K sequential recommendation task.

e — We adopt multi-task learning style to train our network,
including BPR loss and multimodal information reconstruction
loss, which can narrow the gap between modalities and en-
hance the generalization ability of the model.

2. Related works

In this section, we review some related fields including sequen-
tial recommendation, multimedia recommendation.

1

2.1. Sequential recommendation

A large and growing body of literature has investigated about
how to capture the user’s dynamic preference over time. Much
of the current literature on sequential recommendation pays at-
tention to deep neural networks which have powerful modeling
capabilities. According to the basic framework of these models,
they can be broadly classified into three main approaches, RNN-
based methods, CNN-based methods and attention-based meth-
ods. Among the RNN-based methods, one key milestone is model
GRU4Rec ([12]), which is the first one that applies RNN to se-
quential recommendation. Based on it, several improved meth-
ods are proposed to model user’s behavior sequence by RNN net-
works ([2,4,11,23]). For example, [13] propose a parallel RNN ar-
chitecture to model behaviors based on click actions and addi-
tional features of the clicked items. [14] adopt a GRU compo-
nent for capturing sequential dependency and further incorporate
KG for enhancing the modeling of attribute-level user preference.
Among the CNN-based models, [24| apply convolution on the 2-
dimensional latent matrix which is the embedding matrix of L con-
sequent items and capture both point-level and union-level fea-
tures by a horizontal convolutional layer and a vertical convolu-
tional layer respectively. Based on [21], [10] integrate future data
into model training to fill the gap between historical and future
data. Among the attention-based models, [17] propose a sequen-
tial recommendation model based on self-attention mechanism to
select the more relevant item according to historical behaviors.
[22] apply the bidirectional self-attention network to sequential
recommendation to capture both the two directions sequential in-
teractive features.

2.2. Multimedia recommendation

There are a number of studies which aim to improve recom-
mendation performance by leveraging the different multimodal in-
formation of items. According to the specific modality involved by
these methods, they can be divided into three main approaches,
visual-modality based methods, textual-modality based methods
and hybrid-modality based methods. Among the models integrated
with visual information, [19] make suit recommendations accord-
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ing to style information extracted from images. [8] improve the
expressive ability of the network by modeling both the item’s vi-
sual representation and the user’s visual preference representation.
[16] learn the fashion-aware image representations and can gener-
ate new item images satisfying user’s personal taste. [3] apply an
attention layer on the fine-grained visual regions to give out vi-
sual explanations. Among the models integrated with textual in-
formation, [1] propose a novel matrix factorization model which
can consider the ratings and corresponding review texts together.
[9] make an explainable recommendation by exploring the aspects
extracted from reviews. [5] introduce an aspect-aware topic model
to analysis review text, and then evaluate user preferences on dif-
ferent aspects of items by importance score. Among the hybrid-
modality methods, [27] propose a joint representation learning
framework which can leverage different modalities to learn user
and item representations. [6] encode multimodal information with
autoencoders to enrich the representations of items, which aims to
solve the cold start problem.

3. Preliminary

In this section, we introduce the symbols used in this paper
and give a formalization of the sequential recommendation. We
also briefly introduce some preliminary knowledge about recurrent
neural Network (RNN).

Notations. Let ¢/ and Z denote the set of users and items. For
modality information, we use V and 7 to denote the set of images
and texts. For each user u € &, we use i, = {i{. i, --- , i} to denote
the ID sequence, VY., = {v},v4, -, v} and ¢}, = {¢}’. &), -, t}} to
denote the visual and textual sequence, where n represents the se-
quence length. We use i to represent the item that u has inter-
acted with at k-th time step, v and ¢t} are the visual and text of
i

Task Definition. Based on these notations, our task of sequen-
tial recommendation aims to learn the objection function to rec-
ommend the next (n+ 1)-th item that a user u will interact with

. . o, o v
at time t,,q, given modalities of ., V4. , and t}. :

f(iﬁl:n’ v#:n’ t;l:n) - i%-%—l (1)

RNN. RNN-based models such as GRU4Rec ([12]) are good at
capturing sequential user behaviors. LSTM and GRU are variant
forms of Recurrent Neural Network. In this paper, we briefly in-
troduce the network structure of LSTM, which will be used in our
network. It includes three gate mechanisms, forget gate, input gate
and output gate. The basic operations are listed as follows:

fr =oWs-[h_1,x]+Dby)
it =o0W;-[h_1,x]+b;)

at = tanh(WC : [ht—la X[] + bC) (2)
¢ =froc1+iol

o =0 W, [h_1,x]+ bo)

h; = o;otanh(c)

where h, ¢; represent hidden state and cell state at time ¢, x; rep-
resents the input at time t. W, b, € {f, 1, c, 0} are parameters. For
simplicity, we use function Istm(x) to represent the LSTM network
in the following paper.

4. Our approach

In this section, we introduce the proposed multimodal-adaptive
hierarchical network (MAHN) in detail, the structure of MAHN is
shown in Fig. 2. For simplicity, We drop the superscript of u in
the notations for ease of reading. MAHN is a hierarchical network
structure, and each layer has its special role in the overall frame-
work.

12
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The First Layer. To get the knowledge included in multi-
modalities, we first do some work to handle the images and texts.
For each item i, the pre-trained network VGG16 is used to ex-
tract the image feature vector following the work [3], denoted
by e/ e R09, the pre-trained Bert-Encoder is used to extract the
text feature vector, denoted by ef e R768. Since the difference of eV
and ef, we set two parameter matrices W and E to map the vec-
tors from high-dimensional space to low-dimensional space. And
e; represents the latent factors of item i. The operations are listed
as follows:

é}! = We
& =Ee

(3)

After we get the knowledge of visual modality and textual modal-
ity, which denoted by &/ and & in Eq. (3), we take them and item
latent representation as all inputs of item i. Thus, we can derive
the input of item i in the first layer by concatenating them:

he = Istm(&! @ e; @ &) )

where & represents concatenation. Here we must point out that
other operations on these three vectors are allowed. We will
explore different influences on recommendation performance of
some other operations in the experiment part.

The Second Layer. In this layer, we design an information mod-
ulation module to select the useful information for each modality
based on historical multimodal information, which is captured by
the first layer. Based on the first layer, h; can be considered as a
summary of multimodal historical information at time step t. Then
h; is used to select the valuable information carrying by visual vec-
tor and textual vector. For simplicity, we use the visual modality as
an example. The modulation operation are listed as follows:
a =0((My-h+by)o (Ny-€+qy))

g =aoé

(5)

where My, Ny, by, q, are training parameters. o is the sigmoid func-
tion. We can get & by the same operation on él. Then the input of
the second layer is:

(6)

where @ represents concatenation. In the experiment part, we will
explore the operations used in Eq. (6) too.

Learning and Prediction. To improve the generalization ability
of the model, we adopt multi-task training style to learn all pa-
rameters. The multimodal information reconstructed loss is used
to regular the representations of each modality. The specific oper-
ations are as follows:

= W' (@ + &) —elll> + IET (&} + &) — efI? (7)

In this paper, we use BPR rank loss to optimize the recommenda-
tion loss. We use the triple set S = {(u,1i, j) :uei,i, j € Z}, where
i is target item, and j is negative item. the user u’s preference score
on item i is computed as follows:

he = Istm(e} @ hy & €})

loss;

(8)

where &/ @ e; @ € is the representation of item i. In the evalua-
tion phase, &/ and & can be derived since parameters have been
trained. Finally, we optimize the overall loss function by Adam Op-
timizer.

Sui =h(&@e@é)

loss =

>

(wij)es

—log(o (syi — Su,j)) + loss; + loss;

9)
5. Experiments
In this section, we evaluate the proposed model MAHN by

conducting experiments on two public datasets. we describe the
datasets and baselines used in experiments.
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Fig. 2. The overview of model MAHN. It contains two layers, which achieve the re-combination of multimodal information from the bottom layer to the top layer. The
information modulation module between the two layers realizes the selection of each modal information at time step t based on the previous time steps.

Table 1
Statistics of datasets for experiments.
Datasets # Cell Phones  # Clothing
# Users 27,804 39,386
# Items 10,192 23,010
# Interactions 191,396 278,406

Datasets and Evaluation Metrics. We conduct our experiments
on two public datasets, Cell Phones & Accessories and Clothing, Shoes
& Jewelry, which are two domains from Amazon Datasets [19]. For
simplicity, we use Cell Phones, Clothing to represent them respec-
tively. We filter the item without title and image. We only keep
the users and items whose times of occurrences are not lower than
five records. We choose the last one interaction of each record as
the test data, and the second last interaction as the validation data,
the remaining interactions as the training data. The statistics of
two datasets are shown in Table 1. For evaluation, we choose Top-
N recommendation list for each user, where N=10, 20. For each
user, we randomly sample 100 negatives and rank them with the
target item following the strategy in [17] to avoid heavy computa-
tion.

Baselines. We compare with the following recommendation
models to justify the effectiveness of our approaches.

« VBPR [8]: A visual Bayesian Personalized Ranking model.

o JRL [27]: Joint Representation Learning framework that incorpo-
rates heterogeneous information sources for recommendation.

e MV-RNN [6] : A RNN-based model which utilizes visual and

textual information to enhance the representations of items.

GRU4Rec [12]: An RNN-based model, which uses GRU units and

utilizes session-parallel minibatches to make session-based rec-

ommendation.

Caser [24]: Caser captures the stream-level patterns by utilizing

CNN on the adjacent items

SASRec [17]: A self-attention based sequential model that cap-

tures long-term semantics for recommendation.

BERT4Rec [22]: A bidirectional self-attention network which

learns users sequential patterns to make recommendations.

Parameter Settings. As to the baselines, we utilize the rec-
ommended setting by their original work. For SASRec, Caser, we
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use the codes released by their authors. The rest models are
implemented in PyTorch. For MAHN, the learning rate is set to
10-3, and the regularization coefficient is 10~%. During training, we
use dynamic scheduler learning rate by Ir_scheduler_StepLR, where
step_size is set to 10, and gamma is set to 0.5. The embedding size
of all modalities is set to 50. Batch size is 5. The number of layer
for Istm is set to 1. We conduct all experiments on NVIDIA 2080Ti.

5.1. Comparison against baselines

We compare our MAHN model against several competitive
baseline methods on next-one recommendation task. We present
the comparison results in Table 2 and 3. From the experimental
results, we have the following observations.

o Firstly, all evaluation metrics have achieved the best results on
the two datasets, which can prove that the proposed model
MAHN can effectively model the interactions of multimodal in-
formation in sequential data. The overall network structure can
achieve the re-selection of valuable information by modulation
module, which relies on the output of the first layer.

Secondly, the improved performance is more when N =20
than when N = 10. The improvements are 3.16% and 2.28% at
Hit-Ration@10 and NDCG@10 respectively, 5.59% and 5.18% at
Hit-Ration@20 and NDCG@20 respectively. This phenomenon
proves that our model has higher accuracy when recommend-
ing more products to each user.

Finally, the improvements on dataset Clothing is more than that
on Cell Phones. This result is consistent with our intuition that
the visual and textual characteristics of items have a greater
impact on clothing products than electronic products.

5.2. Variants of MAHN model

In this section, we design some variants of MAHN model to ex-
plore that how different treatments on multimodal information in-
fluence the final recommendation accuracy. We use add and cat to
represent addition operation and concatenation operation between
multimodal information. We design four variant MAHN of different
combinations of add and cat, denoted by add-add, add-cat, cat-add
and cat-cat.
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Table 2
Performance comparison for baselines and our model MAHN, where N is set to 10 for Top-N Recommendation. Bolded numbers are the
best performance of each column.

Recommendation Cell Phones & Accessories Clothing Shoes & Jewelry
Model
odess Hit-Ratio@10 NDCG@10 Hit-Ratio@10 NDCG@10
VBPR 0.2778 0.1562 0.1573 0.0869
JRL 0.3427 0.1991 0.2230 0.1189
MV-RNN 0.5349 0.3323 0.3422 0.1996
GRU4Rec 0.4414 0.2703 0.2755 0.1557
Caser 0.4973 0.3172 0.2827 0.1619
SASRec 0.5659 0.3607 0.3818 0.2227
BERT4Rec 0.5783 0.3674 0.3879 0.2269
MAHN 0.5966 0.3758 0.4262 0.2467
Improv. 3.16% 2.28% 9.87% 8.72%
Table 3

Performance comparison for baselines and our model MAHN, where N is set to 20 for Top-N Recommendation. Bolded numbers are the
best performance of each column.

Recommendation Cell Phones & Accessories Clothing Shoes & Jewelry
Model
odes Hit-Ratio@20 NDCG@20 Hit-Ratio@20 NDCG@20
VBPR 0.3689 0.1726 0.2643 0.1157
JRL 0.4525 0.2286 0.3549 0.1531
MV-RNN 0.6701 0.3483 0.4562 0.2159
GRU4Rec 0.5596 0.2984 0.3940 0.1856
Caser 0.6009 0.3372 0.4064 0.1881
SASRec 0.6929 0.3835 0.4968 0.2429
BERT4Rec 0.7057 0.3918 0.5028 0.2491
MAHN 0.7452 04121 0.5570 0.2721
Improv. 5.59% 5.18% 10.7% 9.23%
Table 4

Performance comparison of Variants about MAHN, where N is set to 10 for Top-N Recommendation. add-add means addition operation in
the first and the second layer, add-cat means addition operation in the first layer and concatenation operation in the second layer, cat-add
means concatenation operation in the first layer and addition operation in the second layer and cat-cat means concatenation operation in
the first and the second layer.

Recommendation Cell Phones & Accessories Clothing Shoes & Jewelry
Model:
odes Hit-Ratio@10 NDCG@10 Hit-Ratio@10 NDCG@10

add-add 0.5886 0.3675 0.4185 0.2348

add-cat 0.5961 0.3746 0.4219 0.2423

cat-add 0.5873 0.3667 0.4154 0.2377

cat-cat 0.5966 0.3758 0.4262 0.2467
Table 5

Performance comparison of Variants about MAHN, where N is set to 20 for Top-N Recommendation. add-add means addition operation in
the first and the second layer, add-cat means addition operation in the first layer and concatenation operation in the second layer, cat-add
means concatenation operation in the first layer and addition operation in the second layer and cat-cat means concatenation operation in
the first and the second layer.

Recommendation Cell Phones & Accessories Clothing Shoes & Jewelry
Model
odes Hit-Ratio@20 NDCG@20 Hit-Ratio@20 NDCG@20

add-add 0.7399 0.4056 0.5421 0.2659

add-cat 0.7447 0.4129 0.5562 0.2715

cat-add 0.7393 0.4050 0.5446 0.2632

cat-cat 0.7452 0.4121 0.5570 0.2721

We conduct experiments on the two datasets using the same mance difference between variants add-cat and cat-cat is very

hyperparameters setting with model MAHN. We also evaluate the small.
performance for Top-N recommendation, where N is 10, 20. Results o The performance difference between variants add-add and cat-
are shown in Table 4 and Table 5. From the experimental results, add is very small. It means that when the addition operation is
we can drop the following conclusions. applied in the second layer, what operation is adopted by the

first layer has little impact.
e We can find that when concatenation operation is adopted by
e The best performance is achieved when concatenation opera- the second layer, the performance is higher about one percent
tion is adopted by both the two layers. Furthermore, the perfor- than when addition operation is adopted by the second layer no
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Fig. 3. Three ablation studies on four evaluation metrics of our approach on dataset Cell Phones.

matter what operation is adopted by the first layer. Therefore,
we can drop a conclusion that the operation adopted by the
second layer has more influence on the final performance and
the concatenation operation can achieves better performance.

5.3. Ablation studies on MAHN model

To evaluate each module of MAHN, we design some ablation
studies on our model. To assess the impact of visual information,
we remove the visual-related modules, namely MAHN-V. To eval-
uate the influence of textual information, we remove the textual-
related modules, denoted by MAHN-T. Finally, we remove visual-
and textual-related modules together, namely, MAHN-V-T. Fig. 3
shows the performance comparison among MAHN and its three
degraded models. From the results of three ablation studies, we
can get the following observations.

o MAHN-V-T is worst among all the three ablation studies, which
proves that integrating multimodal information of item con-
tributes to the accuracy definitely. MAHN-V-T only contains the
network structure of RNN, so the performance is similar to
GRU4Rec, which proves that multimodal information have great
contribution to sequence recommendation. Comparing with the
baseline MV-RNN, which is a model including sequential rec-
ommendation modeling and multi-modal modeling, our model
MAHN improves about 12% and 10% for Hit-Ration@10 and
NDCG@10 respectively on Cell Phones & Accessories dataset. It
proves that multimodal information modulation module can
capture multi-modal sequence interactions efficiently.

e We find that MAHN-T and MAHN-V performs better than
MAHN-V-T, but worse than MAHN on two evaluation metrics.

15

This phenomenon indicates that each modality may help the
recommendation in their own way. Textual modality can pro-
vide some information such as categories and characteristics
of commodities, and visual modality provide the images of
goods. MAHN-V is better than MAHN-T by 2% and 1% for Hit-
Ration@10 and NDCG@10, which means that textual informa-
tion contributes a little more than visual information.

5.4. Parameter setting analysis

To analyze the performance of the model, we study the effect
of hyper-parameters to MAHN in this section. We study the effect
of different embedding sizes to MAHN. Specifically, we tune the
embedding size from 10 to 50, and plot the results on Cell Phones &
Accessories in Fig. 4. Observations on the other dataset are similar.

From the results we find that as the embedding size increases,
the test performance in terms of Hit-Ratio@10 and NDCG@10 in-
creases too. The trending is quite consistent over the other dataset.
We find that if we keep increasing the embedding size, there will
be less performance improvement but larger computational com-
plexity and may lead to the over-fitting problem. By observing the
experimental results, we found that when the dimension is larger
than 30, the improvement of performance becomes smaller. It is
worth noting that in this experiment, we don’t compare the base-
line JRL. Because JRL achieves the best performance when the em-
bedding size is 300 since of its assembled structure. By comparing
the experimental results, our model MAHN can achieve better re-
sults than these baselines, which proves that our model can cap-
ture sequential and multi-modal features well.
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5.5. Sparse analysis

To obtain a better understanding whether MAHN can alleviate
the sparse problem, in this section, we conduct the case study to
compare MAHN the second-best model BERT4Rec in Fig. 5 qualita-
tively.

Take Cell Phones & Accessories dataset as an example, we first
sort all the items according their frequencies in our dataset, then
we split the sorted items into 10 groups. In this way, the first
group contains the most frequent items, while the 10 —th group
contains the sparsest items. Given this, we compare the perfor-
mance of these two models on all groups. The performance of
MAHN and BERT4Rec decrease when modelling on sparse item
groups, and this is consistent with the expectation that sparse
items will degrade the performance. Comparing with BERT4Rec,
MAHN shows better performance on all item groups in all evalu-
ation metrics. An interesting observation is that performance gain
between MAHN and BERT4Rec is increasing when applying these
models on sparser item groups.

6. Conclusions

In this paper, we propose a Multimodal-Adaptive Hierarchical
Network for multimedia recommendation, which model the influ-
ence of historical multimodal information on the current moment
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by a modulation module between the two Istm layers. The first
layer of our framework is to capture the historical multimodal in-
formation, and the second layer is to re-select the valuable multi-
modal information based on the output of the first layer by an in-
formation modulation module. In the future, we will explore three
modalities sequential interactions such as video data. There is still
a lot of do to solve the challenges in multimedia recommendation
field.
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