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Abstract    Building an effective sequential recommendation system is still a challenging task due to limited interactions

among users and items. Recent work has shown the effectiveness of incorporating textual or visual information into se-

quential recommendation to alleviate the data sparse problem. The data sparse problem now is attracting a lot of atten-

tion in both industry and academic community. However, considering interactions among modalities on a sequential sce-

nario is an interesting yet challenging task because of multimodal heterogeneity. In this paper, we introduce a novel rec-

ommendation  approach  of  considering  both  textual  and  visual  information,  namely  Multimodal  Interactive  Network

(MIN). The advantage of MIN lies in designing a learning framework to leverage the interactions among modalities from

both the item level and the sequence level for building an efficient system. Firstly, an item-wise interactive layer based on

the encoder-decoder mechanism is utilized to model the item-level interactions among modalities to select the informative

information. Secondly, a sequence interactive layer based on the attention strategy is designed to capture the sequence-lev-

el preference of each modality. MIN seamlessly incorporates interactions among modalities from both the item level and

the sequence level for sequential recommendation. It is the first time that interactions in each modality have been explicit-

ly discussed and utilized in sequential recommenders. Experimental results on four real-world datasets show that our ap-

proach can significantly outperform all the baselines in sequential recommendation task.

Keywords    multi-modality, interactive network, sequential recommendation

 
 

1    Introduction

The goal  of  sequential  recommendation  is  to  rec-

ommend the next item or the next few items based on

users'  sequential  behaviors.  It  plays  a  central  role  in

online  shopping  scenarios  by  sifting  items  from  the

huge corpora. With the ever prospering of neural net-

works, recent years have witnessed strong progress[1−3]

on exploring interactions among users and items for a

better  recommendation.  Inferring  the  auxiliary  prop-

erties from multiple modalities is an important factor

to improve the recommendation performance.

Naturally, the textual or visual information of an

item plays  an important  role  for  the  user  to  make  a

purchase  decision.  It  is  widely  recognized that  utiliz-

ing  the  auxiliary  information  would  largely  improve

the recommendation accuracy. Following this line, the

visual-content[4−6] and  the  language-content[7−9] mod-

els are two main modeling paradigms to explore inter-

actions  among  multimedia  contents  to  improve  the

recommendation accuracy. Concerning the unique val-

ue  of  each  modality,  some  work[10−11] tried  to  inte-

grate  the  multimodal  data  to  improve  the  perfor-

mance. Little work attempted to explore the relation-

ships among modalities for sequential data.

To explain the relationships among modalities, we

present an illustrative example in Fig.1. There is a se-

quence of  items purchased by a user.  From the item

level  we  can  infer  the  user's  real  intention  at  each

step. For example, the user bought a “blouse” in the
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first  time, and purchased a “trench coat” in the sec-

ond time (in blue),  while  from the sequence level  we

know that the user aimed to buy a suit and preferred

clothes  with  Lily  Brown brand  (from the  textual  se-

quence) and light color (from the visual sequence).

Modalities can provide complementary and mutu-

ally  informative  properties  to  describe  users'  prefer-

ences from both the item level and the sequence level.

It  is  necessary  to  capture  the  item-level  preferences

and  the  sequence-level  preferences  from  multiple

modalities.

Although  this  seems  to  be  a  promising  direction,

it  is  non-trivial  to model both the item-level  interac-

tions  and  the  sequence-level  interactions  to  facilitate

recommendation due to the following challenges.

1) Difficulties  in  Extracting  a  Union  Preference
from Each Modality.  How to extract these properties

from a series of images and texts is a challenging task.

In addition, for heterogeneous information, it  is  hard

to define a unified extraction strategy to mine sequen-

tial properties.

2) Difficulties  in  Integrating  These  Complicated
Interactions  from  Different  Levels  for  Recommenda-
tion. Though features mined from both the item level

and  the  sequence  level  are  useful  in  revealing  users'

preferences,  it  is  challenging  to  leverage  these  fea-

tures and infer valuable information for a better rec-

ommendation.

3) Difficulties in Utilizing the Intrinsic Data Cor-
relations  to  Enhance  the  Data  Representations.
Learning  the  correlations  among  the  visual  represen-

tation,  the  textual  representation  and  the  identity

document  (ID)  representation  for  each  item is  a  key

factor  to  improve  the  performance.  Thus,  how  to

make  up  for  sequential  recommendation  by  utilizing

multimodal information is  still  a challenging and un-

resolved task.

To address these issues, based on the item ID se-

quence, the textual sequence and the visual sequence,

we propose Multimodal Interactive Network (MIN) to

learn and leverage interactions among modalities from

the  item  level  and  the  sequence  level  for  sequential

recommendation.  Specifically,  MIN  has  two  interac-

tive layers to leverage interactions from different lev-

els for a better recommendation. The item-wise inter-

active layer is designed to transform both visuals and

texts of items to the same latent factor space to make

them directly comparable. For each item an encoder-

decoder mechanism is applied to match its image and

text to select valuable information. The sequence-wise

interactive  layer  applies  a  self-attention  mechanism

over  each  single  modality  to  generate  its  sequential

properties,  and  applies  a  cross-attention  mechanism

over multiple modalities (ID-visual and ID-text) to in-

fer useful information. The item-wise interactions and

the  sequence-wise  interactions  are  used  for  capturing

the item-level preferences and the sequence-level pref-

erences respectively. MIN finally concatenates the in-

formation  to  predict  the  successive  items.  Based  on

the integrated representations MIN can seamlessly in-

corporate  with  the  classic  sequential  models.  Effec-

tive data representation has been a key factor to im-

prove  the  performances  of  existing  models.  Besides,

we  integrate  two  kinds  of  auxiliary  tasks  into  the

training of our network to enhance our model and im-

prove the recommendation performance. One is a self-

supervised  task  by  maximizing  the  mutual  informa-

tion  between  the  item  representation  and  its  visual

(textual) representation. The item representation and

its  visual  (textual)  representation  know  little  about

each other. The other is the modality transformation

task by optimizing the modal transformation loss. To

 

Lily Brown

Simple Women's

Casual Elegant

Blouse...

Lily Brown

Women 100%

Cotton Trench

Coat Casual

Loose Plus...

Wise Art Pretty

Rattan Beach

Straw Tote

Classic

Hand-woven

Box...

Lily Brown

Women’s

Irregular Pleated

Floral Skirt...

Fig.1.  Example of a user's purchase sequence, where a suit of clothing in light color is purchased sequentially. Each item owns an
image, the brand information, the title and a sentence (describing the products).
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evaluate  the  proposed  model,  we  construct  some  ex-

tensive experiments on four datasets by comparing it

with  several  competitive  baselines.  Experimental  re-

sults  show  that  our  model  can  significantly  outper-

form  all  the  baselines  ranging  from  sequential  ap-

proaches to multimodal approaches.

The contributions of this paper are summarized as

follows.

• We systemically investigate the complex interac-

tions  among  modalities  for  sequential  recommenda-

tion.

• We propose a novel Multimodal Interactive Net-

work (MIN) to employ multimodal information for se-

quential  recommendation  by  integrating  both  the

item-level interactions and the sequence-level interac-

tions  among  modalities.  Besides,  we  design  two  self-

supervised  tasks  by  maximizing  the  mutual  informa-

tion  between  the  item  representation  and  the  visual

(textual) representation to enhance the data represen-

tations.

• Experimental  results  show  that  our  model  can

consistently  outperform  state-of-the-art  baselines  un-

der different metrics for sequential recommendation.

The rest of the paper is organized as follows. Sec-

tion 2 reviews  the  related  work  of  sequential  recom-

mendation,  multimedia  recommendation  and  self-su-

pervised  learning. Section 3 reviews  the  preliminary

knowledge. MIN is introduced in Section 4 and exten-

sive experiments  are  conducted in Section 5.  At last,

we conclude the paper in Section 6. 

2    Related Work

We briefly  review  three  research  areas  related  to

our  work:  sequential  recommendation,  multimedia

recommendation and self-supervised learning. 

2.1    Sequential Recommendation

With  the  prosperity  of  neural  networks,  many

studies try to design powerful sequential neural mod-

els for sequential recommendation. Among these mod-

els,  recurrent  neural  network  (RNN)  based  mod-

els[1–3, 12–14], convolutional neural network (CNN) based

models[15, 16] and  graph-based  models[17–21] are  three

main approaches.

RNN-based  models  focus  on  exploiting  sequential

dependencies  from  interactions  for  recommendation.

For this line, Hidasi et al.[1] and Yu et al.[13] proposed

models that first apply RNN on sequential recommen-

dation  and  demonstrated  their  effectiveness.  After-

wards, a series of RNN-based models have been devel-

oped.  Huang et  al.[22] adopted a gated recurrent unit

(GRU) component for capturing the sequential depen-

dency  and  further  incorporated  knowledge  graph  for

enhancing the modeling ability of attribute-level user

preference.  Kang  and  McAuley[23] introduced  a  novel

self-attention based sequential approach to model the

entire  user  sequence,  and  adaptively  considered  the

consumed  items  for  prediction.  Sun et  al.[24] used  a

bidirectional self-attention network to model users' se-

quential  behaviors.  Zhang et  al.[25] integrated various

heterogeneous  features  of  items  into  feature  se-

quences  through  a  vanilla  attention  mechanism  and

then  applied  separated  self-attention  blocks  on  the

item-level  sequences  and  the  feature-level  sequences.

Zhou et  al.[26] utilized  the  intrinsic  data  correlations

to derive the self-supervision signals and enhanced the

data  representations  via  pre-training  methods  for  se-

quential  recommendation.  The  CNN-based  models

have  been  recently  introduced  in  the  domain  of  se-

quential  recommendation.  For  example,  Tang  and

Wang[15] transformed a sequence of items into a 2-di-

mensional latent matrix and applied a convolution on

it  to  model  the  stream-level  features.  Based  on  [27],

He  and  Chua[28] integrated  the  future  data  into  the

model  training  to  fill  the  gap  between  the  historical

and  the  future  data.  With  the  prosperity  of  graph

neural  networks,  some  new  models  were  proposed.

Wu et al.[17] modeled session sequences as graph struc-

tured  data  and  captured  the  complex  transitions  of

items based on the constructed session graphs. Wang

et al.[29] adopted a hypergraph to represent the short-

term item correlations  and applied  multiple  convolu-

tional layers to capture the semantic information be-

hind items.  Xia et  al.[30] utilized dual  channel  hyper-

graph  convolutional  networks  to  model  session-based

data  and  integrated  self-supervised  learning  into  the

framework to train the network. 

2.2    Multimedia Recommendation

To  alleviate  the  sparse  problem,  recent  efforts

have been made to leverage interactions among multi-

ple  modalities  for  recommendation.  They  can  be

roughly  categorized  into  visual-content  learning  ap-

proaches[4, 5, 10, 31, 32] and  text-context  learning  ap-

proaches[7, 9, 33−35].

Some work considered visual features for the task

recommendation[10, 31, 32, 36].  Chen et  al.[8] gave  out

Teng-Yue Han et al.: Multimodal Interactive Network for Sequential Recommendation 913



some  visual  explanations  by  applying  an  attention

layer  on  the  fine-grained  visual  preferences.  Cui et
al.[37] made  sequential  recommendation  utilizing  an

RNN-based  network  by  incorporating  a  multimodal

representation with each item.

Another  line  is  to  explore  the  semantic  informa-

tion  from  textual  reviews.  For  example,  Li et  al.[9]

proposed  a  novel  review-driven  neural  model  to  en-

hance  the  rich  semantics  from reviews  for  sequential

recommendation. Cheng et al.[33] proposed an aspect-

aware  latent  factor  model  for  rating  prediction  by

combining reviews and ratings effectively. 

2.3    Self-Supervised Learning

Self-supervised learning is a new pattern of train-

ing  networks  on  an  auxiliary  objective.  The  training

signals are constructed by the correlations within the

raw  data[38].  Self-supervised  learning  has  been  intro-

duced into several domains such as computer vision[39, 40]

and natural language processing[41, 42].

For  computer  vision,  Hjelm et  al.[39] split  the  in-

put  data  into  multiple  (possibly  overlapping)  views

and maximized the  mutual  information between rep-

resentations  of  these  views.  The  views  derived  from

other inputs were used as negative samples.  For lan-

guage modeling, Devlin et al.[41] learned to predict the

next word or the next sentence given the previous se-

quences.  The  learned  representations  of  words  or  se-

quences can improve the performance of  downstream

tasks. 

3    Preliminary

In  this  part,  we  first  introduce  the  symbols  used

in this paper, and then formalize the task for sequen-

tial recommendation. Furthermore, since our model is

based on the  classic  transformer  blocks[23],  we briefly

describe the self-attention mechanism used in the ba-

sic transformer blocks. 

3.1    Notations

U I

D X
u ∈ U iu1:n

{iu1 , iu2 , . . . , iun}
vu
1:n = {vu

1 , v
u
2 , . . . , v

u
n} tu1:n = {tu1 , tu2 , . . . , tun}

Let  and  denote the set of users and the set of

items  respectively.  For  modality  information,  we  use

 and  to denote the set  of  visuals  and the set  of

texts  respectively.  For  each user ,  we  use =

 to  denote  the  ID  sequence,  and

 and  to  de-

note the visual sequence and the textual sequence re-

n

iuk u

k vu
k tuk

iuk

spectively,  where  represents  the  sequence  length.

We use  to represent the item that  has interacted

with at the -th time step, and  and  are the vi-

sual  information and the textual  information of  item

 respectively. 

3.2    Task Definition

(n+ 1) u

tn+1 iu1:n
vu
1:n tu1:n

Based  on  above  notations,  our  task  of  sequential

recommendation is  to learn the objection function to

recommend the next -th item that a user  will

interact  with  at  time ,  given  modalities  of ,

, and : 

f(iu1:n, v
u
1:n, t

u
1:n) → iun+1.

 

3.3    Self-Attention Mechanism

The  self-attention  is  a  special  attention  mecha-

nism  that  has  been  shown  to  be  effective  in  various

tasks[23]. Essentially the idea refers to using a content-

based  information  extractor  from a  set  of  queries Q,

keys K,  and values V.  Given the input queries, keys,

and values, the output is a weighted sum of the val-

ues according to a scaled dot-product attention: 

Att(Q,K,V ) = softmax
(
QKT

√
d

)
V ,

dwhere  is  the  scaling factor,  which is  used to  avoid

overly large values of the inner product.

The advantage of self-attention is that it can keep

the contextual sequential information and capture the

relationships  between  elements  in  the  sequence,  re-

gardless  of  their  distance.  In  this  paper,  we  use  this

mechanism  to  model  the  sequence-wise  interactions

among modalities. 

4    Our Approach

We introduce  the  proposed  model  MIN in  detail.

The structure of MIN is shown in Fig.2.

The  model  consists  of  two  modules  for  integrat-

ing interactions among modalities. 1) An item-wise in-

teractive  layer  transforms  each  modality  into  the

same  latent  factor  space  to  make  two  modalities  di-

rectly  comparable.  An  encoder-decoder  component  is

used  to  learn  the  interactions  to  match  the  relevant

features  between  two  distinct  modalities.  2)  A  se-

quence-wise interactive layer extracts sequential prop-

erties from each modality according to the self-atten-
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tion  mechanism  and  the  cross-attention  mechanism.

MIN concatenates them to enrich the semantics of ID

representations,  and  the  enriched  ID  representations

are used to predict the item that the user will buy. In

the following part, we will present the design of each

module.

u

u

For simplicity, we describe the approach for a sin-

gle user , and it is straightforward to extend the fol-

lowing formulas to a set of users. We drop the super-

script of  in the notations for ease of reading. 

4.1    Item-Wise Interactive Layer

k ek

k

evk

tk

etk

As mentioned before, MIN totally considers three

heterogeneous  modalities  for  sequential  recommenda-

tion.  For  the  ID sequence,  it  is  easy  to  handle  it  by

mapping  each  item  ID  to  a  vector  in  a  continuous

space. Each item  is represented as a vector . For

the visual sequence, we follow the previous work[4] to

extract the visual feature of item  according to CNN

models.  The  visual  feature  vector  is  denoted  by .

For the description text , we adopt GRU to encode

its word sequence, and use the final hidden state vec-

tor to represent the description, denoted by .

Based on the embedded representations over visu-

als  and  texts,  we  then  apply  two  encoder-decoder

components  to  align  semantically  similar  concepts

across the two modalities from the item level, denot-

ed by V2T and T2V respectively. V2T encodes the vi-

sual modality to a latent space and then decodes this

latent  space  into  the  textual  modality.  T2V  encodes

the  textual  modality  to  a  latent  space  and  then  de-

codes  this  latent  space  into  the  visual  space.  As

shown in Fig.2, the item-wise interactive layer is used

to  minor  the  gap  between  the  two  modalities.  They

are formalized as follows: 

êtk = fT2V
de (fT2V

en (etk)),

êvk = fV2T
de (fV2T

en (evk)),

fT2V
en (·) fV2T

en (·)
fT2V
de (·) fV2T

de (·)
êtk êvk

etk evk

where  functions  and  represent  two en-

coders  respectively,  and  represent  two

decoders  respectively,  and  and  are  trans-

formed representations from  and  respectively.

According to the encoder-decoder component, we aim

to  match  the  relevant  semantic  features  in  different

modalities.  For  simplicity,  we  use  multilayer  percep-

tron  (MLP)  components  to  model  the  encoders  and

the decoders.

Finally, we use the following functions to enhance

the correlations between visuals and texts: 

V 2T_lossetk
= ∥etk − êtk∥2,

T2V _lossevk
= ∥evk − êvk∥2.

Then  we  use  the  following  function  to  represent

the item-level loss: 

 

Visual Sequence

Encoder

ID Sequence

CNN

Textual Sequence

GRU

+

Item-Wise Interactive Layer

V2T_loss

T2V_loss

Image

Text′

Decoder

Decoder

Text

…

Image'

Pred

Image_2 Image_Image_1

Text_1 Text_2 Text_...

Encoder

Self-Attention
over Single
Modality

Cross-Attention over
Multiple Modalities

Self-Attention
over Single
Modality

Self-Supervised
Learning

Self-Supervised
Learning

Self-Attention
over Single
Modality

Cross-Attention over
Multiple Modalities

Stream-Wise Interactive Layer

Fig.2.  Over architecture of MIN. MIN contains two layers to fully integrate interactions among modalities. The item-wise interac-
tive layer transforms modalities into a same embedding space. V2T and T2V are two encoder-decoder components, and they are ap-
plied on the visual and text of each item to model their interactions from the item level. The sequence-wise interactive layer first uti-
lizes self-attention over single modality to obtain sequence-level properties from each sequence, and then cross-attention over multi-
ple  modalities  is  applied  on  the  textual-visual  pair  and  visual-textual  pair  respectively  to  infer  relevant  information  from the  se-
quence level. The relevant information is concatenated to predict the next item. Pred: Prediction.
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Li =
∑
u

(∑
tk

V 2T_lossetk
+
∑
vk

T2V _lossevk

)
.

LiAs  we  can  see,  can  be  regarded  as  an  auxiliary

task  to  compulsively  model  the  interactions  among

modalities from the item level. 

4.2    Sequence-Wise Interactive Layer

Based  on  the  encoded  representations  of  modali-

ties,  the  sequence-wise  interactive  layer  then  models

both  intra-modality  and  cross-modality  relationships

from  the  sequence  level.  Specifically,  it  first  extracts

the  sequence-level  preference  through  the  self-atten-

tion  mechanism  over  each  single  modality,  and  fur-

ther infers informative features according to the cross-

attention mechanism over multiple modalities. In this

way, sequential information is captured by the self-at-

tention  mechanism  and  the  cross-attention  mecha-

nism.  To  explain  this  in  detail,  we  plot Fig.3 to  ex-

plain the sequential interactions captured by the self-

attention  mechanism  and  the  cross-attention  mecha-

nism. Fig.3(a)  and Fig.3(b)  demonstrate  interactions

of sequential information on visual modality and tex-

tual  modality  respectively.  Each  item  will  interact

with all  the items in front of  it.  The specific  process

will  be  formalized  in Subsection 4.2.1. Fig.3(c)  and

Q

Q

Fig.3(d) demonstrate the interactions of sequential in-

formation  on  visual-to-textual  modality  and  textual-

to-visual  modality respectively,  which will  be formal-

ized  in Subsection 4.2.2.  The  visual  information  of

each item will interact with the textual information of

all  items in front  of  it,  and the visual  information is

query .  Symmetrically  the  textual  information  of

each item will interact with the visual information of

all items in front of it, and the textual information is

query . It is worth noting that the interactions are

different because of different queries. 

4.2.1    Self-Attention over Single Modality

Ei = (ei1 , ei2 , . . . , ein)

The  key  point  of  the  block  is  to  assign  a  weight

automatically on each element of the modality to de-

rive  the  sequence-level  representations.  The  interac-

tions are shown in Fig.3(a) and Fig.3(b). Since the ar-

chitecture  of  the  self-attention  mechanism  over  each

modality is similar, here we only introduce the block

from the ID perspective. Specifically, given an ID em-

bedding  matrix ,  the  computa-

tion rule of the self-attention mechanism is presented

as follows: 

Es
i =

(
es
i1
, . . . , es

in

)
= Att(EiW

q
s ,EiW

k
s ,EiW

v
s ),

 

…

(a)

…

Ushoppingc-

Art Women

Dots Print

Flouncing

Patchwork

Dress…

Allegra K Women

Fake Two Piece

Splicing

Drawstring

Hooded Tunic

Shirt…

Allegra K

Women's Off

Shoulder

Striped

Shirt…

HeeGrand

Women

Color-

Contrasted

Loose T-

Shirt…

(b)

…

…

Ushoppingc-

Art Women

Dots Print

Flouncing

Patchwork

Dress…

Allegra K Women

Fake Two Piece

Splicing

Drawstring

Hooded Tunic

Shirt…

Allegra K

Women's Off

Shoulder

Striped

Shirt…

HeeGrand

Women

Color-

Contrasted

Loose T-

Shirt…

(c)

…

…

Ushoppingc-

Art Women

Dots Print

Flouncing

Patchwork

Dress…

Allegra K Women

Fake Two Piece

Splicing

Drawstring

Hooded Tunic

Shirt…

Allegra K

Women's Off

Shoulder

Striped

Shirt…

HeeGrand
Women

Color-

Contrasted

Loose T-

Shirt…

(d)

Fig.3.  Explanations for the sequential interactions captured by the self-attention mechanism and the cross-attention mechanism. (a)
Interactions of sequential information on visual modality. (b) Interactions of sequential information on textual modality. (c) Interac-
tions of sequential information on visual-to-textual modality. (d) Interactions of sequential information on textual-to-visual modality.
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where ,  and  are  three  projection  matri-

ces respectively.  is the -th column of . Similar-

ly,  we  apply  the  self-attention  mechanism  on  visual

and  textual  sequences  to  obtain  and  respec-

tively. By this way we can obtain the unique sequen-

tial patterns from each sequence. 

4.2.2    Cross-Attention over Multiple Modalities

The purpose of this block is to infer the attentive

semantics  and  the  structure  information  from  visual

and  textual  sequences  to  enrich  item  representations

for  sequential  recommendation.  The  interactions  are

shown in Fig.3(c) and Fig.3(d). Given textual and vi-

sual pairs, the functions are written as follows: 

Ec
v→t =

[
ec
v1→t1

, . . . , ec
vn→tn

]
= Att(Es

vW
q
c ,E

s
tW

k
c ,E

s
tW

v
c ),

Ec
t→v =

[
ec
t1→v1

, . . . , ec
tn→vn

]
= Att(Es

tW
q
c ,E

s
vW

k
c ,E

s
vW

v
c ),

ec
vk→tk

ec
tk→vk

where  and  represent the valuable repre-

sentation  queried  from  the  visual  and  textual  se-

quences respectively.

Es
vW

q
c

As  we  can  see,  in  the  self-attention  mechanism

over  each  single  modality,  we  use  a “homogeneous”
query  to  model  the  intra-interactions  among  modali-

ties.  By  assigning  weights  on  the  elements  of  se-

quences, we highlight the informative semantics from

the sequence level,  while in cross-attention over mul-

tiple  modalities  we  utilize  a “heterogeneous” query

 to  learn  the  inter-interactions  to  integrate  di-

verse features from different modalities. Based on the

queries  that  represent  the  real  need  of  the  ID  se-

quences,  the  visual  sequences  and  the  textual  se-

quences  output  the  attentioned  heterogeneous  infor-

mative patterns. By this way our model is capable of

inferring  the  useful  cross-modal  alignments  from  the

visual sequences and the textual sequences respective-

ly.

After obtaining the inferred features from the tex-

tual-visual  sequence  pair  and  the  visual-textual  se-

quence pair, the two kinds of features describe differ-

ent  perspectives  for  items,  which can be complemen-

tary with each other. It is necessary to integrate these

features together for a better recommendation. Hence,

we fuse three representations for  each item to derive

the final comprehensive representations, denoted as: 

ehybrid
ik = es

ik
⊕ ec

vk→tk
⊕ ec

tk→vk
, (1)

⊕where  is the concatenation operator. As we can see,

our MIN is a very flexible model.  We can apply any

sequential recommenders based on the enhanced item

representations,  including  the  traditional  collabora-

tive  filtering  models  or  deep  models.  For  simplicity,

we output the probability of buying the next item: 

P (in+1|i1:n, t1:n, v1:n) =
exp(ehybrid

in · ehybrid
in+1

)
|I|∑
k=1

exp(ehybrid
in · ehybrid

ik )

.

By considering  all  instances  we  obtain  our  learn-

ing approach as follows: 

Ls =
∑
u

n∑
k=1

logP (ik+1|i1:k, t1:k, v1:k).

Ls

Ls

However,  the  direct  optimization  of  task  ac-

cording  to  (2)  has  high  computational  complexity.

Therefore,  we adopt the negative sampling technique

for  efficient  optimization,  which  approximates  the

original objective  with the following objective func-

tion: 

Lneg
s =

∑
u

n∑
k=1

(
logσ(ehybrid

ik · ehybrid
ik+1

)+

neg × Eineg∼PI

(
logσ(−ehybrid

ik · ehybrid
ineg

)
) )

, (2)

σ(x) σ(x) =1/(1 + e−x)

neg ineg
I PI

where  is the sigmoid function ,

 is  the  number  of “negative” samples,  is  the

negative item sampled from , and  is the empiri-

cal distribution over all items. 

4.3    Learning and Prediction

Li

In this paper, we integrate two kinds of auxiliary

tasks into the training of our network to enhance our

model and improve the recommendation performance.

One is  the self-supervised task,  which has two parts.

One part is the mutual information maximization be-

tween  the  item  representation  and  the  visual  repre-

sentation.  The  other  part  is  the  mutual  information

maximization  between  the  item  representation  and

the  textual  representation.  The  other  task  is  the

modality  transformation  task  by  optimizing  the

modal transformation loss. The loss of modality trans-

formation task  is introduced in Subsection 4.1. We

will introduce the loss of the self-supervised learning.

In model MIN, we learn three kinds of representa-
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tions  of  each  item,  namely  item  ID  representations,

item visual representations and item textual represen-

tations.  Unfortunately,  the  item  representation  and

the  visual  (textual)  representation  know  little  about

each  other.  For  the  mini-batch  item  representation,

the  item  visual  (textual)  representation  can  be  the

ground  truth  of  the  self-supervised  learning.  We

adopt  InfoNCE[38] with  a  standard  binary  cross-en-

tropy loss between the samples from the ground truth

and the corrupted samples as our learning objective: 

Lss

= − logσ(f(es
ik
, ec

vk→tk
))− logσ(1− f(es

ik′ , e
c
vk′→tk′ ))−

logσ(f(es
ik
, ec

tk→vk
))− logσ(1− f(es

ik′ , e
c
tk′→vk′ )).

As  we  need  to  optimize  both  the  item-level  loss

and the sequence-level loss, we obtain our final objec-

tive function as follows: 

LMIN = Lneg
s + αLi + βLss + λ ∥Θ∥2

, (3)

λ α β

Li

Lss Θ

where  is  the  regularization constant,  and  and 

are  the  hyperparameters  to  control  the  weight  of 

and  respectively.  represents all parameters that

need  to  learn.  We  use  a  multi-task  learning  style  to

train the framework.

u

iu1:n

N

With the learned MIN, given a user  and his/her

interaction  sequence ,  for  each  item  we  calculate

the  purchasing  probability  according  to Subsection

4.2.2.  We  then  rank  the  items  according.  their  pur-

chasing probabilities,  and select the top  results as

the final recommendations. 

5    Experiments

We evaluate  our  proposed  model  focusing  on  the

effects of interactions among modalities. 

5.1    Experimental Setup
 

5.1.1    Datasets

We conduct experiments on the publicly available

Amazon dataset[5] as it offers both the item visual in-

formation  and  the  item  textual  information.  The

dataset  fits  our  task.  Considering  the  diversity  of

scales and species, we choose three categories from the

Amazon dataset. They are Cell Phones & Accessories

(Cell  Phones),  Sports  and  Outdoors  (Sports),  and

Clothing, Shoes & Jewelry (Clothing). Besides, we use

the  MovieLens  dataset[24].  We  transform  the  users'

ratings into implicit feedback data, in which each en-

try is marked as 1 indicating that a user has rated the

item,  and  0  otherwise.  We  extract  the  key  frame  of

each trailer  for  each movie  to  extract  the  visual  fea-

ture. We crawl the corresponding movie description.

Considering that in our model we utilize multiple

modalities  to  improve  the  recommendation  perfor-

mance,  we  remove  those  items  missing  visuals  or

texts.  Based  on  this,  we  follow  the  work[23] to  filter

unpopular  items  and  inactive  users  with  fewer  than

five  records.  The  statistics  of  the  four  datasets  are

shown in Table 1.

 
 

Table  1.    Statistics of Datasets for Experiments

Dataset Number of
Users

Number of
Items

Number of
Feedbacks

Cell Phones[5] 27 804 10 192 191 396

Sports[5] 35 597 18 267 295 091

Clothing[5] 39 386 23 010 278 406

MovieLens[24] 55 485 5 986 1 239 508

 

u

For  each  user,  we  sort  her/his  records  according

to  the  timestamp  to  form  the  interaction  sequence.

Based on the sorted sequences, we treat the last item

of each sequence as the test data, and the second last

item as the validation data. Specifically, for each user

 we randomly sample 1 000 negative items to avoid

heavy  computation,  and  rank  these  items  with  the

ground-truth item. 

5.1.2    Evaluation Metrics

N

N

We provide a top-  recommendation list for each

item in the testing set, where = 20. For evaluation,

we employ the commonly-used hit-ratio and NDCG[23]

as  our  evaluation  metrics.  We  perform  significant

tests  using  the  paired t-test.  Differences  are  consid-

ered statistically significant when the p-value is lower

than 0.05. We repeat each experiment for five times,

and the final results are the average of the five times. 

5.1.3    Baselines

We  use  the  following  recommendation  models  to

justify the effectiveness of our model, including the se-

quential  recommenders  and  multimedia  recom-

menders.

For  sequential  models,  we concern both the shal-

low models and the deep models.

• GRU4Rec[1].  It  is  an  RNN-based  model  which
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uses  GRU  units  and  utilizes  session-parallel  mini-

batches to make session-based recommendation.

• Caser[15].  Caser  captures  the  stream-level  se-

quential  patterns  by  utilizing  CNN  on  the  adjacent

items.  Caser  aims  to  model  the  relations  among  the

history interactions.

• SASRec[23].  It  is  a  self-attention  based  sequen-

tial  model  that  captures  the  long-term semantics  for

recommendation.

• BERT4Rec[24].  It  is  a  bidirectional  self-atten-

tion  network  which  learns  useful  sequential  patterns

to make recommendations.

• FDSA[25]. It is a self-attention network which in-

tegrates  various  heterogeneous  features  of  items  into

the feature sequences.

• S3-Rec[26].  It  is  a  pre-trained  model  which  uti-

lizes the intrinsic data correlations to derive the self-

supervision signals for sequential recommendation.

• HyperRec[29]. It is a hypergraph convolution net-

work  which  adopts  a  hypergraph  to  represent  the

short-term item correlations and applies multiple con-

volutional layers to capture the semantic information

behind items.

• DHCN[30].  It is a dual channel hypergraph con-

volutional  network  which  models  session-based  data

and integrates self-supervised learning into the frame-

work.

For multimedia recommenders, we use the follow-

ing methods.

• VBPR[4].  It  is  a  visual  bayesian  personalized

ranking  model  which  is  a  well-known  method  based

on visual features in the field of fashion recommenda-

tion.

• JRL[11].  JRL  is  a  joint  representation  learning

framework which incorporates heterogeneous informa-

tion sources for recommendation.

• MV-RNN[37].  It  is  an  RNN-based  model  which

utilizes  the  visual  information  and  the  textual  infor-

mation to enhance the representation of items. 

5.1.4    Parameter Settings

10−4

10−4

50

50

50

512 0.1

For  baselines  we utilize  the  recommended setting

by  their  original  work.  For  Caser[15] and  SASRec[23],

we  use  the  codes  released  by their  authors.  The  rest

models  are  implemented  in  PyTorch.  For  MIN,  we

use  Adam  to  train  our  model.  When  MIN  achieves

the  best  performance,  the  parameters  are  set  as  fol-

lows:  the  learning  rate  is  set  to ,  the  regulariza-

tion coefficient is , and the embedding size is set

to 100. For the positional embedding used in the at-

tention  mechanism,  we set  the  size  to  50  on all  four

datasets. If the sequence length is greater than , we

consider its recent  elements. If the sequence length

is  shorter  than ,  we  fill  zero  vectors  for  each  se-

quence.  For  the  self-attention  block,  the  number  of

head is  1,  and the hidden size  of  the point-wise  feed

forward layer is . The dropout ratio is set to . 

5.2    Comparison Against Baselines

We compare our MIN model against several com-

petitive  baselines  on  the  next-item  recommendation

task.  We  present  the  comparison  results  in Table 2.

From this table, we have the following observations.

 

Table  2.    Performance Comparison for Baselines and MIN for Next-Item Recommendation

Model Cell Phones Sports MovieLens Clothing

Hit-Ratio@20 NDCG@20 Hit-Ratio@20 NDCG@20 Hit-Ratio@20 NDCG@20 Hit-Ratio@20 NDCG@20

VBPR[4] 0.147 4 0.069 0 0.114 1 0.052 2 0.204 9 0.097 0 0.080 2 0.044 7

JRL[11] 0.181 0 0.091 4 0.137 1 0.061 6 0.249 0 0.116 3 0.106 4 0.046 9

GRU4Rec[1] 0.225 0 0.103 2 0.173 1 0.072 3 0.278 3 0.129 7 0.119 5 0.052 2

Caser[15] 0.247 9 0.108 4 0.198 4 0.085 7 0.297 2 0.136 9 0.124 2 0.056 9

MV-RNN[37] 0.268 1 0.113 7 0.216 4 0.088 3 0.319 4 0.145 2 0.136 8 0.063 7

SASRec[23] 0.261 9 0.116 0 0.215 0 0.093 8 0.325 9 0.152 8 0.151 5 0.061 0

BERT4Rec[24] 0.270 8 0.118 5 0.224 5 0.094 8 0.332 7 0.153 3 0.157 3 0.067 5

FDSA[25] 0.277 3 0.123 3 0.226 9 0.099 2 0.338 8 0.155 8 0.165 9 0.074 2

S3-Rec[26] 0.280 6 0.124 9 0.232 8 0.105 5 0.344 7 0.155 9 0.172 4 0.076 0

HyperRec[29] 0.290 4 0.132 8 0.248 5 0.113 9 0.347 2 0.158 2 0.179 9 0.081 7

DHCN[30] 0.292 1* 0.138 4* 0.251 9* 0.116 7* 0.348 5* 0.164 0* 0.183 7* 0.082 2*

MIN 0.314 9 0.149 5 0.264 7 0.124 5 0.364 8 0.172 6 0.206 7 0.093 1

Improvement (%) 7.805 5 8.020 2 5.081 3 6.683 8 4.677 1 5.243 9 12.520 0 13.260 0

⩽
Note:  Bolded numbers  are  the  best  performance  of  each column.  The starred  numbers  represent  the  best  baselines.  The last  row
shows the improvement of our results against the best baseline. The improvement is significant at p  0.05.
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1) For sequential recommenders, we see that deep

models  GRU4Rec[1],  Caser[15],  and SASRec[23] achieve

good  performance.  The  result  is  consistent  with  the

previous findings[14, 23].

We  also  see  that  SASRec  performs  better  than

GRU4Rec  and  Caser  on  four  datasets.  The  underly-

ing  reason  may  be  that:  in  the  interaction  sequence

there  are  items  irrelevant  to  the  recommended  item.

These  irrelevant  items  can  be  regarded  as  noises.

SASRec  uses  a  self-attention  mechanism  to  assign

weights  on  each  element  of  the  interaction  sequence.

By this way SASRec is capable of selecting the more

informative  features  for  sequential  recommendation.

BERT4Rec  performs  a  little  better  than  SASRec  in

most  cases  since  it  can  capture  right-to-left  patterns

in a sequence. However, it does not make a huge im-

provement.  The  underlying  reason  may  be  that  the

extra properties are not necessary when predicting the

next item. FDSA and S3-Rec integrate various hetero-

geneous  features  of  items  into  feature  sequences  and

can  achieve  a  better  performance  than  BERT4Rec.

HyperRec and DHCN achieve better performances. It

proves the graph convolutional network has powerful

modeling ability in capturing the complex relations.

2)  JRL  designs  a  unified  recommendation  frame-

work  that  fuses  different  types  of  information  re-

sources and obtains a better performance than VBPR.

This  observation  is  also  consistent  with  our  findings

in the ablation study. By incorporating the visual in-

formation and the textual information with RNN net-

works, MV-RNN makes recommendations with repre-

sentations  including  both  latent  and  unified  multi-

modal information. MV-RNN achieves a better perfor-

mance  than  JRL  because  of  its  consideration  on

items' sequential properties.

3)  Sequential  recommenders  perform  better  than

multimedia  recommenders  in  most  cases.  The  under-

lying  reason  may  be  that  the  sequential  pattern  is

more  crucial  for  sequential  recommendation.  Fusing

extra informative features is more capable of explain-

ing interactions between users and items. The lack of

capturing sequential patterns limits the performances

of the baselines. This observation also reveals the ne-

cessity  of  mining interactions  among modalities  from

the sequence level.

4)  Finally  by  fusing  both  item  visuals  and  texts

into  a  unified  framework,  MIN  models  interactions

among modalities from both the item level and the se-

quence  level  and  further  concatenates  informative

properties mined for sequential recommendation. MIN

achieves  the  best  performance  among  all  the  models

on four datasets. Taking the Clothing, Shoes & Jewel-

ry  dataset  as  an  example,  we  find  when  compared

with  the  best  baseline  the  performance  improvement

of  MIN  is  around  12.52%  and  13.26%  on  Hit-

Ratio@20 and NDCG@20 respectively. 

5.3    Ablation Study on Model MIN

MIN  fuses  two  kinds  of  modalities  by  modeling

the  complex  interactions  for  sequential  recommenda-

tion. We conduct experiments to analyze the variants

of MIN. 

5.3.1    Item Level vs Sequence Level

One advantage of  MIN is  that it  incorporates in-

teractions among modalities from both the item level

and the sequence level into ID representations for reco-

mmendation.  We  aim  to  analyze  the  performance  of

MIN  when  considering  the  interactions  at  different

levels separately.

Li

es
in

ec
vn→tn

ec
tn→vn

ein

êvin
êtin

We first make some degeneration on MIN. Specifi-

cally, in the item-wise interactive layer we remove the

encoder-decoder  component  to  ignore  modeling  the

connections  across  modalities  from the  item level.  In

this  way  we  only  concern  the  interactions  among

modalities from the sequential view and we name the

new model MIN-i. In (3) MIN optimizes the loss func-

tion  including  the  recommendation  loss  and  the  en-

coder-decoder  loss.  We  remove  the  encoder-decoder

loss .  To  remove  the  sequence-wise  interactions

from MIN, we replace ,  and  with ,

 and  respectively  in  (1).  By  this  way  we  re-

tain  the  item-wise  interactions  among  modalities,

while  removing  the  self-attention  over  single  modali-

ty  and  cross-attention  over  multiple  modalities.  We

name the  new model  MIN-s. Fig.4 shows  the  perfor-

mance  comparisons  among  MIN and  its  two  degrad-

ed models. From the results we have the following ob-

servations.

1)  MIN-i  performs  better  than  MIN-s  over  all

metrics  on  four  datasets.  This  observation  demon-

strates  the  significance  and  necessity  of  considering

sequential  interactions  among  modalities  for  sequen-

tial recommendation. By capturing the sequential pat-

terns the sequential recommenders can perform signif-

icantly  better  than  other  recommenders  without  se-

quential information.

2)  Though  less  effective,  the  item-wise  interac-

tions  among  modalities  are  also  valuable.  MIN  out-
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performs MIN-i on all evaluation metrics. Taking the

Clothing, Shoes & Jewelry dataset as an example, the

performance improvement of MIN in terms of the ab-

solute  value  is  around  1.28%  on  Hit-Ratio@20  com-

pared with MIN-i. It demonstrates the significance of

analyzing the interactions among modalities systemat-

ically for sequential recommendation. 

5.3.2    Visual Sequence vs Textual Sequence

As  MIN  totally  utilizes  two  different  informative

modalities, we further analyze the benefits when con-

sidering item visuals and texts respectively.

For clear comparison we also make some degrada-

tion  of  MIN.  Specifically,  we  remove  the  visual  se-

quence  from  MIN.  In  this  way  we  only  concern  the

impact  that  the  texts  brought.  We  name  the  new

model  MIN-v.  Similarly,  we  remove  the  textual  se-

quence  and  rename  the  model  MIN-t.  We  further

compare  the  two  single-modality  models  MIN-v  and

MIN-t. Fig.4 shows  the  performance  comparisons  of

these models.

We  find  that  there  is  no  big  difference  between

MIN-v and MIN-t. It indicates that the unique infor-

mation  existing  in  different  modalities  may  help  the

recommendation. By fusing both visuals and texts in-

to a unified framework, MIN obtains the best perfor-

mance  on  all  four  datasets.  It  verifies  the  effective-

ness  of  considering  various  types  of  information

sources for sequential recommendation. 

5.3.3    Analysis of Loss Function

We  analyze  the  contribution  of  each  auxiliary

task.  As  described  in  (3),  we  adopt  the  multi-task

training  style  to  train  our  network.  Generally  speak-

ing,  multi-task  training  can  improve  the  generaliza-

tion  of  models.  We  conduct  experiments  on  dataset

Clothing,  Shoes  &  Jewelry  by  using  different  loss

functions. The results are shown in Table 3.

Li Lss

From the results in Table 3 we can get the follow-

ing  observations.  1)  Multimodal  transformation  loss

 and  self-supervised  learning  loss  do  help  im-

prove  the  performance  of  the  model.  2)  Self-super-

vised learning task contributes a little more than the

multimodal transformation task, since it fuses the vi-
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sual  information,  the textual  information and the la-

tent information. 

5.4    Variant Methods for Multimodal

Feature Interactions

In  MIN,  multimodal  feature  interactions  are  cap-

tured  by  the  self-attention  mechanism.  We  compare

this  mechanism  with  other  methods.  In  this  subsec-

tion, we design two variant methods to model sequen-

tial feature interactions, which are shown in Fig.5. As

RNN is good at dealing with sequential problems, we

design  two RNN-based  variant  models  to  handle  the

multimodal feature interactions. In Fig.5(a), we name

the method Parallel-LSTM, which handles the multi-

modal feature interactions separately. In Fig.5(b), we

name  the  method  Mixed-LSTM,  which  handles  the

multimodal feature interactions mixed. We also com-

pare  different  actions  on  the  final  representation  in

(1) for our model MIN. We use MIN-dot to represent

the  variant  model  using  dot  product  operation.  We

use MIN-add to represent the variant model using ad-

dition operation.  In the model  MIN, we use concate-

nation action. We conduct this experiment on dataset

Clothing,  Shoes & Jewelry.  The results  are shown in

Table 4.

From Table 4 we have some conclusions. 1) Mixed-

LSTM  can  capture  sequential  multimodal  features

better  than  Parallel-LSTM.  2)  The  self-attention

mechanism has  a  strong  ability  in  modeling  complex

interactions.  3)  Besides,  the  concatenation  action  on

the  final  preference  representation  achieves  the  best

performance.
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Fig.5.  Structure of (a) Parallel-LSTM and (b) Mixed-LSTM.
 
 
 

Table   4.      Performance  Comparison  for  Variant  Methods  on
Dataset Clothing, Shoes & Jewelry

Model Hit-Ratio@20 NDCG@20

Parallel-LSTM 0.132 0 0.058 7

Mixed-LSTM 0.147 5 0.063 8

MIN-dot 0.189 2 0.084 4

MIN-add 0.193 5 0.088 2

MIN 0.206 7 0.093 1
 
 

5.5    Embedding Size Analysis

We study the effect of different embedding sizes in

MIN.  The  hidden  dimension  can  affect  the  modeling

capability of the model. Specifically, we tune the em-

bedding  size  from 10 to  100,  and plot  the  results  on

Sports and Outdoors in Fig.6.  Observations on other

datasets are similar.

From  the  results  we  find  that  as  the  embedding

size  increases,  the  test  performance  in  terms  of  ND-

CG@20 and Hit-Ratio@20 increases too. The trend is

quite  consistent  over  the  four  datasets.  For  sequen-

tial  recommenders  we  find  these  models  usually  ob-

tain stable performance with several tens or at most a

hundred  of  latent  factors.  If  we  keep  increasing  the

embedding  size,  there  will  be  less  performance  im-

provement.  Larger  computational  complexity  may

lead  to  over-fitting.  This  observation  is  quite  consis-

tent with the previous findings[11, 23].

Compared  with  other  models,  we  see  that  MIN

obtains a better performance at the same embedding

size. The performance is also consistent with the con-

clusion in [37].  The reason may be that MIN consid-

ers  more  multimedia  data  for  recommendation.  This

is why we adopt 50 as the default embedding size for

MIN in the previous experiments.
 

 

Table  3.      Performance Comparison for Different Loss Types
on Dataset Clothing, Shoes & Jewelry

Loss Hit-Ratio@20 NDCG@20

Lneg
s 0.176 8 0.081 2

Lneg
s + Li 0.184 0 0.083 7

Lneg
s + Lss 0.191 5 0.085 3

Lneg
s + Li + Lss 0.206 7 0.093 1
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5.6    Model Complexity Analysis

We count the running time of the model on each

dataset  to  evaluate  the  time  complexity.  MIN  is  a

multimodal  interactive  network  designed  for  captur-

ing sequential feature interactions, which includes the

visual modality and textual modality information. We

record  the  training  speed  (the  time  taken  for  one

epoch of training) on each dataset, and we conduct all

experiments  on  NVIDIA-2080  Ti  under  the  parame-

ters setting described in Subsection 5.1.4.

According  to  the  results,  the  training  speed  is

closely related to the dataset. From the perspective of

deep learning, the time of model training and predic-

tion is acceptable. The results are listed in Table 5.
 
 

Table  5.    Statistical Analysis of Training Speed

Dataset Training Time (s) Prediction Time (s)

Cell Phones 242 118

Sports 313 153

Clothing 341 167

MovieLens 962 251
 

5.7    Visualization Analysis

A  core  point  is  that  we  apply  the  self-attention

mechanism  to  infer  informative  features  from  differ-

ent  modalities  for  improving sequential  recommenda-

tion in MIN. In order to better understand why it is

useful,  we  further  construct  qualitative  analysis  with

a case study on dataset Clothing, Shoes & Jewelry in

Fig.7.

Mrcuff

Specially, we take a snapshot of the interaction se-

quence  for  a  sample  user.  The  interaction  sequence

consists of six items. The items are time-ordered. It is

interesting  to  see  that  both  the  visual  sequence  and

the  textual  sequence  can  offer  informative  properties

for MIN to make a correct recommendation. The tex-

tual  sequence  indicates  that  the  user  buys  some cuf-

flinks and a tie bar of the same brand “ ”. The

user aims to buy a tie and a shirt of the same brand

“Kenneth  Cole  reaction”.  The  visual  sequence  shows

his/her preference to the formal clothing style. By as-

signing  the  attention  weights  on  each  element  of

modalities,  MIN  can  well  capture  these  informative

properties and recommend the dress shirt correctly. 

6    Conclusions

In this work, we proposed Multimodal Interactive

Network (MIN) by considering different modalities for

sequential  recommendation.  MIN  concerns  the  com-

plex  interactions  among  modalities  from  both  the

item  level  and  the  sequence  level  and  further  inte-

grates  semantic  information  for  recommendation.  In

contrast  to  previous  multimedia  recommenders  that

mostly  focus  on  the  item-wise  interactions,  our  work

reveals  the  significant  sequence-wise  interactions  and

improves  the  recommendation  performance.  To  the

best of our knowledge, it is the first time that interac-
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tions among modalities have been explicitly discussed

and utilized in sequential  recommendation.  The mul-

timodal  preferences  of  users  in  sequence  data  can  be

well  modeled.  In  the  future,  we  will  consider  how to

adaptively  learn  a  better  modality  representation  for

sequential recommendation. 
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