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Abstract—Knowledge graph captures structured information
and relations between a set of entities. Researchers always
introduce knowledge graph (KG) into recommender systems
for more accurate and explainable recommendation. Recently,
many researchers deploy Graph Neural Network (GNN) with
knowledge graph in recommender systems. However, they do not
consider proper aggregation and ignore the layer limitation of the
GNN. To tackle these issues, we propose a novel recommendation
framework, named Relation-Enhanced Multiple Graph Attention
Network (REMAN for short), which models the heterogeneous
and high-order relationships among entities in recommendation.
Firstly, we encode user behaviors and item knowledge as a unified
relational graph. Then we utilize a relation-specific attention
aggregator to aggregate the embeddings of the heterogeneous
neighbors. Thirdly, we propose a relation-enhanced user graph
in order to make up for the limitations of the GNN layer
in recommendation. Finally, we make prediction based on the
embeddings we learned in graphs. Extensive experiments on
three benchmark datasets demonstrate that our framework
significantly outperforms strong recommender methods.

Index Terms—Recommender Systems; Graph Neural Network;
Embedding Propagation; Knowledge Graph

I. INTRODUCTION

Recommender systems, which aim to help users find poten-
tially interested items, are playing significant roles in many
web sites (e.g., Amazon [1], YouTube [2]) to overcome the
information overload problem. A traditional recommendation
technique is collaborative filtering (CF) [3], [4], which usually
suffers from the sparsity of user-item interactions. Researchers
then introduce additional sources of information to address
sparsity issue. Some researchers simply using attributes by
transforming the information into a generic feature vector,
and feeding it into a supervised learning model to predict the
score [5], [6]. But these methods ignore the relation between
item information, so researchers introduce the knowledge
graph (KG) to capture structured data and relations between
a set of entities.

KG are heterogeneous graphs in which nodes correspond to
entities (e.g., items or products, as well as their properties and
characteristics) and edges correspond to relations. KG provide
connectivity information between items via different types of
relations and thus capture semantic relatedness between the
items. In general, existing KG-aware recommender systems
models can be categorized into three types: Embedding-based
models [7]–[9], path-based models [10]–[12] and hybrid mod-
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Fig. 1. A toy example of recommendation graph which contains users, books,
categories, author as graph nodes.

els [13]–[16]. Due to the limitations of the first two methods,
many researchers propose the hybrid methods based on the
above two methods which learn user/item embeddings by
exploiting the structure of KG.

Recently, the hybrid propagation-based method which in-
troduce GNN to recommendation shows its effectiveness. But
their models are not fully adapted to the recommendation.
To see this, we present an illustrative example in Fig.1.
The picture shows a graph composed of users, products
(i.e., books) and attributes and their relations. The neighbor
aggregation as Fig.1 is widely used by hybrid models. We take
the neighbor aggregation of User1 as an example, there are
two main problems: (1) In the 2-layer aggregation, a variety
of different entities are aggregated. Due to the characteristics
of product recommendations, the meaning of entities with
different relationships also varies greatly, such as “User2” and
“Romance”. But previous methods apply attentive neighbor-
hood aggregation without considering the differences of type
between adjacent nodes in Recommendation. (2) There is a
limitation of the GNN layer for recommendation. For example,
we have a path between “User1” and “User4” where its
length is 4 in Fig.1. But in GNN models for recommendation,
4-layer aggregation will introduce irrelevant information and
affect the recommendation result. Therefore the important
meta-path information will be ignored causing the effect of
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layer number on the GNN performance.
To remedy these problems, we propose a Relation-

Enhanced Multiple Graph Attention Network (REMAN for
short), which models the heterogeneous and high-order re-
lationships among entities in recommendation. Firstly, we
encode user behaviors and item knowledge as a unified rela-
tional graph. Secondly, we utilize a relation-specific attention
aggregator to aggregate the embeddings of the heterogeneous
neighbors. Thirdly, we propose a relation-enhanced user graph
in order to make up for the shortcomings of previous methods
when mining the users’ personal preferences and the limita-
tions of the GNN layer for recommendation. Finally, we make
prediction based on the embeddings we learned in graphs.
By doing so, our model is able to capture relation-aware
high-order connectivity and introduce user profile information.
Extensive experiments on three benchmark datasets demon-
strate that our framework significantly outperforms strong
recommender methods.

II. RELATED WORK

In this section we provide a brief overview on two related
research areas, which are knowledge-aware recommendation
and graph neural networks respectively.

A. Knowledge-Aware Recommendation

Traditional recommender systems that are based on collab-
orative filtering (CF), which models user-item interactions by
inner product or neural networks such as BPRMF [17]. Then
researchers introduce the knowledge graph (KG) to capture
structured data and relations between a set of entities.

KGs are heterogeneous graphs which provide connectivity
information between items via different types of relations
and thus capture semantic relatedness between the items.
In general, existing KG-aware recommender systems can be
categorized into three types: Embedding-based methods [7]–
[9], path-based methods [10]–[12] and hybrid methods [13]–
[16].

Embedding-based methods pre-process a KG with knowl-
edge graph embedding (KGE) algorithms which model rig-
orous semantic relatedness (e.g., TransE [18] assumes head
+relation = tail), such as CKE [8] model KG completion by
TransR and recommendation with shared item embeddings.
But these methods lack high-order modeling and have poor
scalability. Path-based methods [10]–[12] exploit the KG
structure by design meta-path patterns or path selection algo-
rithms to extract latent features in heterogeneous knowledge
graph. But path selection has a large impact on the which
relies heavily on manually designed meta-paths/meta-graphs.
Many researchers have proposed the hybrid methods based
on the above two methods. RippleNet [13] is a memory-
network-like model that propagates users’ potential prefer-
ences in the KG and explores their hierarchical interests.
Recently, the hybrid propagation-based methods are utilized
to combine GNN and KG for recommendation. For example,
the KGNN-LS model [14] applies GCN on the user-specific
graph to learn item embedding. In KGAT [16], the graph

attention mechanism is adopted to aggregate and propagate
local neighborhood information of an entity, without consid-
ering users’ personalized preferences on entities. On summary,
these hybrid propagation-based methods implicitly aggregate
the high-order neighborhood information via layer by layer
propagation. Our proposed model can be seen as an instance
of hybrid propagation-based methods.

B. Graph Neural Networks

Recently, Graph Neural Networks [19]–[21] have achieved
appealing performance in various application by modeling
both the edges and the node attributes simultaneously. For
example, Graph Convolutional Networks (GCN) [19] presents
an efficient layer-wise propagation rule based on the first-
order approximation of the spectral convolutions on graphs.
It achieves outstanding performance for semi-supervised clas-
sification on the graph-structured data. GAT [20] leverages
masked self-attentional layers to calculate the hidden repre-
sentations of each node in the graph by attending over its
neighbors. GraphSage sampling a fixed-size set of neighbors
as the support size. PinSage [22] provides a data-efficient GCN
algorithm based on GraphSAGE [23] for effective Web-scale
recommender systems. Several recent efforts have attempted
to leverage Heterogeneous Graph Neural Networks [14], [24],
[25] and Knowledge Graph [14], [16] for recommendations.
KGNN-LS [14] extended GCN to the knowledge graph by
aggregating the neighborhood information selectively and bi-
asedly. KGAT [16] combined knowledge graph embedding
with graph attention networks to model both the user-item
interactions and the knowledge graph for recommendations.
Though these two methods can model the knowledge graph
information, they simply employ GNN to predict items and did
not fully consider designing for the recommended scenarios.

III. TASK FORMULATION

In this section, we first introduce CKG based on the
heterogeneous graph, then we introduce relation-enhanced
user graph. Finally, the task description is given.

Heterogeneous Graph. A heterogeneous graph, donated as
G = (V, E ,R), where V , E , R are the set of nodes, edges
and relations respectively. We define the edge from node h to
node t by relation r is constructed by triplet (h, r, t). So we
define E = {(h, r, t)|h, t ∈ V, r ∈ R}.

Collaborative Knowledge Graph. We construct collaborative
knowledge graph (CKG), which encodes user behaviors and
item knowledge as a unified relational graph. We define CKG
as GCK = (VCK , ECK ,RCK), and VCK = U

⋃
I
⋃
A where

U , I,A are the set of users, items and attributes respectively.
(1) For each user behavior, we represent it as (u, yui, i),

where u ∈ U , i ∈ I and yui = Interact = 1 is a
relation between user u and item i. (2) For each item-
attribute edge in the knowledge graph, we represent it as
(h, r, t) where h ∈ I, t ∈ A. For example, (Harry Potter,
WrittenBy, J.K. Rowling) states the fact that J.K. Rowling
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Fig. 2. The overall architecture of Relation-Enhanced Multiple Graph Atten-
tion Network (REMAN). For simplicity, we have omitted reverse relations in
GCK .

wrote Harry Potter. Based on the item-entity alignment
set, we seamlessly integrate the user-item graph with KG
as a heterogeneous graph. (3) In addition, for each tuple
(h, r, t) in the GCK , we define a corresponding tuple
(t,−r, h). For example, the tuples (User1, Interact, Book1)
and (Book1, BeInteractedBy, User1) mean the user
interact with the book while the book is interacted by
the user. The tuples (Book2, IsWrittenBy,Author) and
(Author,Write,Book2) are also the meaning of relation
and reverse relation. We construct GCK through the above
definitions.

Relation-Enhanced User Graph. Due to limitations of layer
length, we lack the ability to explore long-path information.
Besides, In the GCK , the item neighbor aggregated information
is more abundant than the user neighbor aggregated, because
only items directly connected to the user in one-hop for users.
Therefore, insufficient exploration of user information in the
aggregation of GCK results in the deficiency of modeling
users’ personal preference.

To solve these problems, we apply the conventional
method of constructing meta-path graph to our user graph.
We design the relation-enhanced user graph based on
metapath “user-item-attribute-item-user”, and represent it as
GRU = (VRU , ERU ) where ERU = {(h, ru, t)|h, t ∈ U} where
(h, ru, t) indicates there is a “user-item-attribute-item-user”
path between user h and user t. GRU is an undirected graph.

Task Description. We now formulate the recommendation
task to be addressed in this paper: Given the CKG GCK and

Fig. 3. Relation-specific attention aggregator.We take the item i as an
example.

Relation-Enhanced User Graph GRU , our task is to generate a
ranked list of items that will be of interest to user u.

IV. THE PROPOSED MODEL

To solve the personal recommendation problem, we pro-
pose a Relation-Enhanced Multiple Graph Attention Network
(REMAN) framework. Figure 2 shows the architecture of the
method. Given the graphs GCK and GRU shown on the left side
of the figure, REMAN makes predictions with three compo-
nents: Heterogeneous Graph Neural Network layer, Relation-
Enhanced User Graph Neural Network layer and Prediction
layer.

A. Heterogeneous Graph Neural Network Layer

To capture the heterogeneous and high-order relationships
between nodes in CKG GCK , this layer exploits our proposed
relation-specific attention aggregator to aggregate information
from heterogeneous neighbors, which come from different
edges.

1) Relation-specific attention aggregator: We propose the
relation-specific attention aggregator to deal with the various
types of edges in the heterogeneous graph. In the hetero-
geneous graph, each node can connect to other nodes with
different type of edges.

The key idea of the relation-specific attention aggregator
is that: When we are calculate the attention scores between a
node and its neighbors, neighbors coming from different types
of edges should be treated differently. It is not reasonable to
simulatenously apply the softmax function on different rela-
tions because they have significantly different characteristics.
Taking an item node i in the heterogeneous graph GCK as
an example, Fig.3 illustrates the aggregation process in our
method. For a target node h, firstly, we group its neighbors
by the edge types. Let Nh = {t|(h, r, t) ∈ GCK ;h} be
the neighbors of h with all types of relations, and Nh,r =
{t|(h, r, t) ∈ GCK ;h, r} be the neighbors of h with a given
relation type r ∈ R. Secondly, for each relation type r,
as shown in Equation 1, we aggregate the information of
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neighbors Nh,r, which have relation r with the target node,
into embedding erNh

:

erNh
=

∑
t∈Nh,r

α(h, r, t)et (1)

where α(h, r, t) is the attention score between h and t in
relation r. In this paper, we calculate the attention scores using
Equations 2 and 3:

e(h, r, t) = ehwret
T (2)

α(h, r, t) =
exp(e(h, r, t))∑

(h,r,t′)∈Nh,r
exp(e(h, r, t′))

(3)

where e(h, r, t) is the attention coefficients between h and t,
wr ∈ Rd×d is the trainable parameters of relation r and the
attention scores is normalized across the neighbors in the same
relation using the softmax function. Thirdly, we aggregate the
neighbor embeddings of all the relation types using Equation
4:

eNh
=

∑
r∈R

erNh
=

∑
r∈R

∑
t∈Nh,r

α(h, r, t)et (4)

Finally, we update the embedding of h into eh
′ based on

the aggregated information of its neighbors (i.e. eNh
) and h’s

current embedding eh as follows:

eh
′ = agg(eh, eNh

) = σ(Wa(eNh
+ eh)) (5)

where Wa ∈ Rd×d are trainable parameters, σ is nonlinear
function (e.g., ReLU).

2) Multiple-hops Aggregation: To model high-order re-
lationships between nodes, we perform the relation-specific
attention aggregator for n hops. For the node h with an
initial embedding eh

(0), the i-th layer aggregates the em-
beddings of its i-hop neighborhood nodes in the graph. The
new representations of h from different hops are denoted as
eh

(1), eh
(2), . . . , eh

(n) respenctively. The final embedding of
h is defined as ẽh:

ẽh = eh
(0)||eh(1)...||eh(n) (6)

The vector ẽh ∈ R(n+1)d is the concatenation of the embed-
dings from different aggregation layers and n is the maximum
number of hops.

B. Relation-Enhanced User Graph Neural Network Layer

Given the graph GRU , we adopt the same attentive aggre-
gator and propagation rule with heterogeneous graph neural
network layer. Notice that GRU is homogenous graph, the
linear combination equation of node h’s neighborhood will
change from Equation 4 to following equation:

eNh
=

∑
t∈Nh

α(h, ru, t)et (7)

Finally, we get users embedding through layer propagation
from GRU . For the user u We represent its output embedding
as êu ∈ Rd.

TABLE I
STATISTICS OF DATASETS FOR EXPERIMENTS.

Dataset #interactions #users #items #entities #relations

Beauty 198,502 22,363 12,101 42,355 20
Books 1,856,747 52,406 41,264 313,956 49

LastFM 203,975 7,694 30,658 214,524 19

C. Prediction Layer

For the user u and the item i, we can get the representation
ẽu and ẽi from heterogeneous graph neural network layer, and
the representation êu from relation-enhanced user graph layer.
We integrate the user u’s representations and project u and i
representation into a dimensional space:

e∗u = MLP(ẽu||êu; Φu
mlp) (8)

e∗i = MLP(ẽi; Φi
mlp) (9)

where we use Φmlp to represent parameters used to project
u and i representation into the same d-dimension space. User
representation e∗u and item representation e∗i are fed into a
function f : Rd ×Rd → Rd for u’s preference score:

ŷui = f(e∗u, e
∗
i ). (10)

D. Optimization

To optimize the recommendation model, we opt for the BPR
loss. Specifcally, it assumes that the observed interactions,
which indicate more user preferences, should be assigned
higher prediction values than unobserved ones:

L =
∑

(u,i,i′)∈T
− ln(ŷui − ŷui′ ) + λ||Θ||22 (11)

where T is the set of the ground-truth triplets, and i′ is a
random sampled negative item for replacing true item i, Θ is
the parameters of our model, and λ is the coefficients of the
L2 regularization.

V. EXPERIMENT

In this section, we evaluate REMAN on the task of personal
recommendation. We first introduce the experimental settings,
then we compare our model to the baseline methods to
demonstrate its effectiveness on recommendation.

A. Experimental Setup

We ran our experiments on three real-world datasets from
different domains including two e-commerce recommendation
datasets and one music dataset.
• Amazon1 [26] comprises a large corpus of reviews and

timestamps on various products. We adopt two categories
of diverse size and sparsity, which are Books and Beauty.

• LastFM2 [27] is a music listening dataset released from
Last.fm online music system. We take the subset of the

1http://jmcauley.ucsd.edu/data/amazon/
2http://www.cp.jku.at/datasets/LFM-1b/
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TABLE II
PERFORMANCE COMPARISON ON THE THREE DATASETS. THE BEST PERFORMANCE IS BOLD FACED; THE RUNNER UP IS LABELED WITH‘∗’; ’IMPROVE’

INDICATES THE IMPROVEMENTS (PAIRED T-TEST WITH PVALUE ¡ 0.01) THAT OUR MODEL ACHIEVES RELATIVE TO THE ‘∗’ RESULTS.

Dataset
Evaluation

metric

CF-based
Models

Path-based
Models

Embedding-based
Models

Hybrid Models
Improve

BPRMF PER CKE NIPPLE KGNN-LS KGAT REMAN

Beauty
HR@10

0.321 0.299 0.352 0.392 0.409 0.440∗ 0.483 9.84%
Books 0.502 0.464 0.553 0.601 0.641 0.682∗ 0.742 8.70%

LastFM 0.402 0.363 0.441 0.485 0.508 0.559∗ 0.621 11.10%

Beauty
NDCG@10

0.185 0.146 0.204∗ 0.235 0.245 0.276∗ 0.308 11.36%
Books 0.302 0.247 0.344 0.394 0.412 0.458∗ 0.504 9.88%

LastFM 0.257 0.213 0.293 0.337 0.353 0.402∗ 0.452 12.51%

dataset where the timestamp is from Jan, 2015 to June,
2015.

For all datasets, we remove users and items with fewer than
five interaction records. In our work, we need to obtain the
knowledge graph information for items in each dataset. For
the LastFM and Amazon datasets of Books and Beauty, similar
with [28] we link the items with Freebase entities to enrich the
entities and relations. The statistics of two datasets are shown
in Table I.

We adopt leave-one-out, which has been widely used in the
previous efforts [3], [29]–[31], to evaluate the recommendation
performance. For each user, the latest interaction is held out as
test set, and the remaining data is utilized as training set, while
5% of data from testing sets are further randomly selected as
the validation sets. Aligning with [3], [32], during testing, for
each user, we randomly sample 100 items that the user has
not interacted with and then rank the test item among the 101
items to avoid heavy computation on all user-item pairs.

B. Evaluation metrics

We provide top-N recommendation list for each item in the
testing set, where N=10. Following [3], [32], we adopt Hit-
Ratio@N and NDCG@N as the evaluation metrics to compute
both metrics for each test user. Here we abbreviate Hit-
Ratio@N as HR@10. Generally, higher metric values indicate
better ranking accuracy.

C. Parameter Settings

For the baselines, to make a fair comparison, we follow the
reported optimal parameter settings and optimize them using
the validation set. We implement our method in Tensorflow.
We optimize our model using the Adam optimizer. We set the
learning rate as 10−4, batch size as 512, embedding size d
as 64, dropout ratio as 0.1, coefficient of L2 normalization as
10−5 and the number of propagation layer as 3 in CKG GCK

while we apply 2-layer propagation for GRU .

D. Baselines

To evaluate the performance of our methods, we compare
our methods with the following methods:

• BPRMF [29]: the Bayesian Personalized Ranking based
matrix factorization, which is a classic method for learn-
ing pairwise personalized rankings from user implicit
feedback.

• PER [12]: is a representative of path-based methods,
which treats the KG as heterogeneous information net-
works and extracts meta-path based features to represent
the connectivity between users and items. Following the
previous work [15], [16], We use manually designed
“user-item-attribute-item” as meta-paths such as user-
book-author-user for Amazon-book and user-musician-
country-musician for LastFM.

• CKE [8]: is a representative of embedding-based meth-
ods, which exploits semantic embeddings derived from
TransR [33] to enhance matrix factorization.

• RippleNet [13]:is a hybrid method, which is a memory-
network-like approach that propagates users’ preferences
on the KG for recommendation.

• KGNN-LS [14]:is a hybrid propagation-based method
with KG, which applies GCN on KG to compute the
item embedding by propagating and aggregating the
neighborhood information on item KG.

• KGAT [16]:is a hybrid propagation-based method with
KGs, which employs graph attention mechanism on KG
to exploit the graph context for recommendation.

E. Comparison against Baselines

We compare REMAN to the state-of-the-art baseline meth-
ods for recommendation. From Table II, we can observe that:
(1) REMAN outperforms all of the baselines significantly on
three datasets. (2) For hybrid models, graph propagation meth-
ods KGNN-LS and KGAT perform better than RippleNet. It
shows that graph propagation mechanism is useful to consider
for recommendation. Specially, KGAT adopts the graph atten-
tion mechanism for high-order connectivity, and outperforms
KGNN-LS that uses a simple graph convolutional network.
(3) The embedding-based model CKE performs better than
BPRMF and PER, because it explores knowledge information
to a certain extent while path-based model PER heavily relies
on the quality of handcrafted meta-paths, and BPRMF lacks
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TABLE III

PERFORMANCE COMPARISON OF REMANw/oKG , REMANw/oRU , AND

REMAN OVER THREE DATASETS. BEST PERFORMANCE IS WRITTEN IN

BOLD.

Dateset Metric REMANw/oKG REMANw/oRU REMAN

Beauty
HR@10 0.445 0.464 0.483

NDCG@10 0.278 0.291 0.308

Books
HR@10 0.681 0.711 0.742

NDCG@10 0.455 0.475 0.504

LastFM
HR@10 0.546 0.602 0.621

NDCG@10 0.390 0.426 0.446

the KG information. PER performs worst indicating that this
method might not make full use of item knowledge. (4) KGAT
is the best baseline on the three datasets, as it considers the
attributes of the items and high order relationships between
items. But it does not really consider aggregation in the
context of different relationships and does not adequately
leverages information of the heterogeneous graph which is
weak in capturing users’ personalized preferences. Our work
has improved these deficiencies to achieve a better exploitation
on KG, REMAN shows its effectiveness for personalized
recommendation.

F. Ablation Study

We conduct ablation studies to evaluate the performances
of the following our model variants: (1) REMANw/oKG

ignores the knowledge graph of items’ meta attributes.
(2)REMANw/oRU removes the relation-enhanced user graph
from model, which only considers the node embedding from
CKG GCK for recommendation. The performance of these
variants is shown in Table III. From this table, we have fol-
lowing findings: (1) REMAN overperforms all of the variants,
indicating that all of our mechanisms are very important for
the superior performance of our model. (2) The performance
of REMANw/oKG is the lowest. Such phenomenon demon-
strates the significance of items’ meta attributes. (3) RE-
MAN achieves better performance than REMANw/oRU . This
demonstrates the relation-enhanced user graph is suitable for
personalized recommendation to capture users’ personalized
preferences.

G. Analysis on the relation-specific attention aggregator

In this section, we analyze the impact of the relation-
specific attention aggregator. Specifically, we adopt the nor-
mal attention aggregator which has been widely used in the
previous efforts and denoted it as REMANnr. REMANnr

does not consider the relationship in Equation 4 of neighbor
aggregation. Fig.4 presents the performance comparison with
and without the pairwise learning strategy. As we can see, RE-
MAN consistently outperforms REMANnr on three datasets.

Fig. 4. Performance comparison of the REMAN with REMANnr on three

datasets in terms of HR@10 and NDCG@10.

It indicates the effectiveness of the proposed relation-specific
attention aggregator for our approach.

VI. CONCLUSION

In this paper, we propose a novel relation-enhanced multiple
graph attention network to models the heterogeneous and
high-order relationships among entities in recommendation.
We encode user behaviors and item knowledge as a unified
relational graph. Then, we innovatively utilize a relation-
specific attention aggregator and relation-enhanced user graph
to enhance the effectiveness of relation. Relation-specific at-
tention aggregator aims to aggregate the embeddings of the
heterogeneous neighbors. Relation-enhanced user graph aims
to make up for the limitations of the GNN layer for recom-
mendation and model the user preference. Finally, we make
prediction based on the embeddings we learned in graphs.
By doing so, our model is able to capture relation-aware
high-order connectivity and increase the introduction of user
profile information. The empirical results show that our model
can significantly outperform strong recommender methods.
We also provide detailed analysis on REMAN model. In the
future, we aim to explore more effective graph information
like relation-enhanced user graph to improve the performance
of recommendation.
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