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Num2vec: Pre-Training Numeric Representations for Time

Series Forecasting in the Sensing System
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Time series forecasting in the sensing system aims to predict future values based on historical records that
sensors have collected. Previous works, however, usually focus on improving model structure or algorithm
for better performance but the perspective of learning proper numeric representations is overlooked. The
inappropriate and coarse numeric representations are not expressive enough to capture the intrinsic charac-
teristics of numbers, which will obviously degrade the prediction performance.

In this article, we propose Num2vec, an algorithmic framework to learn numeric representations. Specif-
ically, Num2vec lists three main logic characteristics of numbers: arithmetic, direction, and periodicity. By
representing numbers into a transition space, Num2vec can translates numbers agilely to different Internet
of Things tasks through selecting the corresponding characteristics. According to such a design, Num2vec
enjoys flexible numeric representations to fit different Internet of Things time series tasks. Extensive exper-
iments on four real-world datasets show that the approach achieves the best performance when compared
with state-of-the-art baselines.
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1 INTRODUCTION

Benefiting from the explosive deployment of Internet of Things (IoT) devices, a massive amount
of time series data now is continuously generated and in turn contributes tremendous practical
value to different sensing system, such as air quality [12, 32], intelligent transportation [10], and
human mobility [33], among others. In this specific scenario, single-value data collected from sen-
sors account for a large proportion. Considering their unique status, it is necessary to capture the
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Fig. 1. Arithmetic. The blue dots show that the arithmetic relationships actually weaken in the intermediate

process of model.

characteristics of numeric data for effective time series forecasting. However, previous works usu-
ally overlooked this perspective but focused on improving the model structure or algorithm for
better performance. The numeric data is thus lacking in-depth modeling to capture their intrinsic
characteristics, and making the prediction performance inevitably degraded.

Consequently, in this article, we try to answer the following question: How to model these char-

acteristics over numbers with representation learning? This has rarely been noticed before, because
different numeric data is arising from different scenarios where their intrinsic characteristics
vary widely. For instance, the essential implications of temperature value “20 ◦C” and direction
value “20◦” are not equivalent. This means that multiplex feature relationships cannot be modeled
uniformly.

But, it is surprising that traditional methods ignore these inherent numerical characteristics
since the oversimplified numbers are always ideally thought to be recognized and accepted per-
fectly by the model [17, 22, 26, 30]. However, numbers lack sufficiently clear structure and distinct
correlation, in contrast to text data in neural linguistic programming [9, 23–25].

Given the variety of numerical data in IoT time series applications, in this work we define three
different characteristics (i.e., arithmetic, direction, and periodicity), which cover almost all numeric
characteristics among time series measured by sensors.

However, it remains a great challenge to capture corresponding characteristics based on the
different target sequences—specifically, we take air quality monitoring as an example to illustrate.
First, the arithmetic, as a basic property, can reflect the magnitude relationship of numbers. But
the neglected arithmetic becomes utterly absent after undergoing the high-dimensional transfor-
mation in models. Figure 1 reflects the nonlinear relationships of vectors in model’s intermediate
process by PCA [35]. Second, the direction is generally rendered as angle values, which carry ori-
entation but no magnitude relationship. For instance, “359◦” and “0◦” differ by 359 in numerical
values, but 1 in angular values. So, they have almost the same influence on the target variable
(e.g., the influence of wind direction on PM2.5 concentration as shown in Figure 2. Third, the pe-

riodicity involves an obvious seasonal pattern or day-periodic characteristic. Traditional temporal
properties capturing methods generally manipulate the timestamps [41], which compels various
variables to share equivalent periodic constraints. Again, the behavior of periodicity is not glob-
ally the same (i.e., month-periodic or even day-periodic), as shown in Figure 3. It can clearly be
seen that data obtained from different sensors traditionally only requires us to pay attention to the
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Fig. 2. Direction. The radar chart describes the impact of wind on PM2.5 concentration in March, where

angle and radius indicate wind direction and wind speed, respectively, and the depth of color indicates the

concentration of PM2.5. It can be observed that adjacent angles have similar effects.

Fig. 3. Periodicity. The main part shows month-periodic of PM2.5 in February, March, and April, and the

part indicated by three red dots shows day-periodic on the last day of the third week. Although the average

value of PM2.5 for the 3 days is close, the change at each moment is not regular.

magnitude relationship between values. However, during data preprocessing, numbers with the
same numerical value but different implications tend to be the same after standardization. Again,
during model training, the logical characteristics of intra-sequence from temperature or wind di-
rection values may be corrupted after high-dimensional transformation. Therefore, it is necessary
to learn representations of different numerical values and constrain model training based on dif-
ferent types of values in IoT time series data.

With regard to this, we are supposed to model a pre-training framework for explicitly extracting
three characteristics respectively by numeric representations. Here we propose Num2vec, a pre-
training numeric representation learning method, which imposes potential arithmetic, direction,
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and periodicity in virtue of the numbers’ realistic characteristics. In short, our method explicitly
(i) represents numbers as points in a (high-dimensional) “transition space” and helps these exist-
ing characteristics reduce the damage caused by intermediate transformation, and (ii) three logic
characteristics’ numeric representation results cooperated with the original values are applied to
the downstream predictor. Ultimately, our method helps extend potential characteristics to models’
parameter space and preserve essential knowledge of the numeric sequences in high-dimensional
transition vectors. As a result, we improve the model prediction accuracy and make these numeric
representations interpretable. In summary, the contribution of this article lies in three aspects:

• Compared with the traditional IoT time series forecast task, we focus on learning potential
logic characteristics. To the best of our knowledge, this is the first study to improve predic-
tion performance from the perspective of modeling numeric representations.
• To meet the preceding goal, we propose Num2vec, a pre-training numeric representations

of learning intrinsic arithmetic, direction, and periodicity. It is clearly beneficial to extract
and maintain these potential characteristics in the connected downstream models.
• We conduct extensive experiments on four real-world datasets, and the proposed method

helps the model achieve better forecast performance. Moreover, the additional representa-
tion processing increases the interpretability of task.

The rest of the article is organized as follows. Section 2 reviews the related work about IoT time
series forecast and representation learning. We present an overview in Section 3. Section 4 pro-
poses three intuitions and presents corresponding numeric representations to improve forecasting
performance. Section 5 evaluates the proposed method by extensive experiments over datasets and
analyzes representation results quantitatively. Section 6 concludes this article.

2 RELATED WORK

2.1 Time Series Forecasting

Time series forecasting has been an emerging topic in machine learning, which can be broadly di-
vided into two categories from the perspective of methodology. The first category is model-driven
approaches. It is also well known as parametric approaches, which are generally predetermined
based on strong theoretical assumptions [14]. However, these assumptions are hardly satisfied in
practice, thus limiting their forecasting performance. The previous methods, such as ARIMA [40],
can only learn linear relationships among different timesteps, which have an inherent deficiency
in fitting many real-world time series data that are highly nonlinear. The second category is data-
driven approaches, which requires us to start from various data perspectives to fill the knowledge
gaps in the model. Traditional machine learning methods, such as KNN [42, 45], and PCA [43, 44]
heavily rely on handcrafted features with expert experience. Consequently, these methods are not
well-suited to analyzing real-world high-dimensional time series datasets as they require signifi-
cant amounts of prior knowledge and are difficult to learn features autonomously from raw data.
Recently, deep learning has made it possible to effectively model high-dimensional data, which
helps us automatically discover hierarchical features but comes at the expense of memory. For ex-
ample, LSTnet [17] combines CNNs and RNNs to capture short-term local dependencies and long-
term trends simultaneously. TPA-LSTM [26] employs a novel attention mechanism named tempo-

ral pattern attention to capture temporal patterns across multiple timesteps. Informer [41] tackles
the efficiency problem of high-complexity self-attention and shows remarkable performance on
forecasting tasks with long sequences. Differently, our work predicts time series tasks from the
perspective of the data driven approach. However, unlike the preceding approaches, we pay more
attention to the underlying logic-characteristic representation capacity of raw numeric data.
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2.2 Representation Learning

Representation learning is the effective operating of constructing explanatory features that can
be used for classification or prediction problems, which is generally classified into two categories
based on learning methods. The first is end-to-end methods. They learn for a single task as su-
pervised learning, which is supposed to model complex and diverse features through some deep
learning approaches [13]. The second is pre-training methods. They obtain general embedding
vectors or representations from the unsupervised or self-supervised objects for different down-
stream tasks. These methods not only help data establish more complete feature representation
but also contribute to a variety of downstream tasks and practical applications [39]. Some word
embedding methods in neural linguistic programming [8, 9, 21, 24], node embedding methods in
graph representations [4], and entity/relationship embedding methods in knowledge graph [2, 31]
can be commonly applied in succession. In recent years, this method has also attracted much atten-
tion in spatial-temporal data processing [20], so as to help model the spatiotemporal properties of
data. This indirectly explains that representation learning began to enter the pure digital data pro-
cessing. Benefiting from in-depth research on knowledge graph representation, our work applies
pre-training representations to time series in the sensing system.

But note that the application of representation learning in time series does not reach deeper
to the logic characteristics. Although traditionally most of the actual machine learning research
has focused on feature engineering or the design of pre-processing data transformation [1], the
intrinsic characteristics of numeric data are not fully represented into models [34]. Additionally,
the performance of the model heavily depends on data representation or features. Therefore, it
strongly motivates the adoption of a recent trend in time series forecasting toward utilization of
numeric representation—Num2vec proposed in this article. It helps the original numeric sequence
learn potential logic representations so that data with more knowledge can better suit the down-
stream forecast work to improve performance.

3 OVERVIEW

To model the potential characteristics of original numerical dataand simultaneously enjoy the
generalization benefits of IoT time series forecasting, in this article we do not choose to design a
targeted end-to-end predictive model but shift to learning generic pre-training numeric represen-
tations. Starting from a logic characteristics point of view, this work extracts arithmetic, direction,
and periodicity, which are sufficient to represent numerical characteristics of most IoT time series.
Therefore, our Num2vec helps the downstream predictor incorporate prior knowledge of numeri-
cal intrinsic characteristics and capture pivotal features of potential relationships.

The intuitions are as follows:

• Intuition 1—Arithmetic extraction: To enhance the arithmetic properties for time series, we
consider assigning addition and subtraction operations as relationships, thus capturing the
magnitude similarity between numbers.
• Intuition 2—Direction extraction: To append the directional attribute to the angle values in the

sequence, we design interval and opposite relationship for 361 discrete values to distinguish
them from arithmetic.
• Intuition 3—Periodicity extraction: Due to the uncertainty of the subsequence (e.g., month-

periodic and day-periodic as shown in Figure 3), we capture periodic characteristic through
constraints on periodic functions dynamically.

3.1 Problem Formulation

Time series in sensing systems generally consist of multiple nonpredictive time series and a target
series. The time series data X = {x1,x2, . . . ,xτ } denotes historical observations in τ time window
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size, where each xi represents multivariate variables. The forecasting goal is to predict the target
observation at the next momentY = {xτ+1}. In general, traditional methods are usually abstracted
as a mapping from input to output X → Y , which requires us to learn the mapping function bet-
ter to realize performance benefits. Different from this, this work is designed to learn numeric
representations based on arithmetic, direction, and periodicity, which help each original data xi

append corresponding prior characteristic knowledge. Therefore, we further learn numerical po-
tential representation R to assist in learning the preceding mapping in the pre-training phase of
the prediction model. The new mapping is described as follows:

{X;R} → Y .

3.2 Framework Overview

To realize the preceding pre-training numeric representations, we build a module in two steps. The
first step is naturally capturing potential characteristics according to the logical relationship of val-
ues. Concretely, we analyze the input data X in view of three numerical characteristics, and we
model the underlying arithmetic, direction, and periodicity by numeric representations, as shown
in module 2 of Figure 4. This step helps extract the underlying three logic characteristics and con-
vert them into high-dimension transition vectors as additional constraints of original sequences.
The second step is easily fusing the three representations and original data to fit various down-
stream models, as shown in module 3 of Figure 4. We integrate standardized raw data as well as
learned numeric representations and then merge them into the forecaster. It not only benefits data
to maintain their intrinsic relationships in higher-dimensional space but also provides better per-
formance for the time series forecasting task. Furthermore, appending these more interpretable
characteristics to numbers can scale to large, real-world datasets, which is compatible with differ-
ent IoT general tasks.

4 METHODOLOGY

In this section, we describe our implementation method Num2vec in the numeric representations
module in Figure 4. Due to the overlapping of periodic data with arithmetic and direction, we
design two approaches. We first discuss how to model the first two characteristics in Section 4.1.
Then, we explore how to extract periodicity in Section 4.2. Finally, we discuss how to combine the
learned multi-characteristic with original data for downstream prediction in Section 4.3.

4.1 Translation-Based Numeric Representations

To attach underlying arithmetic and direction characteristics (relationships) between numbers (en-
tities), we exploit translation-based methods to model numeric representations. It applies these
numbers to a metric space with a novel translation-based structure, which enjoys the benefits of
using a single, interpretable component.

4.1.1 Model Numeric Characteristics. Recall that the time series is composed of a sequence of
scalar numbers that carry different relationships and characteristics naturally, and we decide to
model the relationships between the values structurally. In the field of knowledge graph embed-
ding [6, 7, 29], they generally employ triples (head, relation, tail) to represent knowledge. By con-
structing a graph where nodes are entities (e.g., head, tail) and edges are relations, it learns a
representation of structured relational information. Specifically, transE [2] and transH [31] are
the translation-based knowledge graph embedding models that use distance-based measures to
generate the similarity score for a pair of entities and their relationships. Additionally, they aim
to find a vector representation of entities in relation to the translation of the entities. Inspired by
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Fig. 4. Time series forecast framework with numeric representation. Module 1: Multivariate sequences as

inputs. Module 2: Model potential arithmetic, direction, and periodicity characteristics over corresponding

numbers and map to transition vectors Ra ,Rd ,Rp by additional numeric representation. Module 3: Fusing

three numeric representations and original data into the downstream forecast model.

them, Num2vec designed two targeted algorithm modules, Arith-N2v and Dir-N2v, by interpreting
multi-relation numbers as high-dimensional vectors to model the potential numeric features.

Arithmetic Characteristic. In view of the arithmetic characteristic, Num2vec converts directly to
addition and subtraction operations between numbers, which not only can extract the relationship
between numbers but also helps the sequence learn the difference between two timesteps. Method-
ologically, we learn a transition spaceΨa = Rk , where each of the numbers i ∈ Ea is represented
with a vector i ∈ Ψa . To model the arithmetic characteristic, we represent addition relationships r+
and subtraction r− relationships with two translation vectors r+,r− ∈ Ψa to capture the number’s
inherent correlation. For instance, after we determine the two values i, j and the relationship r , it
should be guaranteed that there is a unique valuem matching it, and what we want is

i + r+ +m = j, (1)
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ALGORITHM 1: Arith-N2v

Input:

Numbers and relations sets Ea ⊃ Xa , La , correct quads Sa = {s |s = (i, r ,m, j)}, incorrect quads
S ′a = {s ′|s ′ = (i ′, r ,m′, j ′)}, margin η, representation dimension ka .

Output:

Arithmetic numeric representations on number sets Ra .

1: initialize r ,x ← uniform(− 10√
ka
, 10√

ka
), r ← r

‖r ‖ ,

where r ∈ La , x ∈ Ea .
2: loop

3: x ← x
‖x ‖ for each x ∈ Ea .

4: Sbatch ← sample a mini batch from Sa .
5: Qbatch ← initialize the set of quads as empty set.
6: for s ∈ Sbatch do

7: s ′ ← sample an incorrect quad from S ′a .
8: Qbatch ← Qbatch ∪ {s, s ′}.
9: end for

10: Ra ← Update representations w.r.t.∑
[η + ΔDq]+

11: end loop

12: return Ra ← xRa to enhance linear correlation.

which means that j should be the nearest neighbor of i + r+ +m in Ψ according to some dis-
tance metric (e.g., squared Euclidean distance). Additionally, the metric formula applied for a quad
(i,r ,m, j) is denoted as d(i +r +m, j) for convenience, and the comparison with traditional triples
is shown in Section 5.4.1. In this article, we optimize the following margin-based ranking loss to
train our methods:

La =
∑

[η + ΔDq]+, (2)

where margin η makes the summation always positive (i.e., [x]+ =max (0,x )), which is equivalent
to the interval correction between the two quads. ΔDq denotes d(i + r +m, j) −d(i ′ + r +m′, j′),
whose former and latter items respectively sample from correct quads Sa and incorrect quads S ′a .
The incorrect quads are formed by replacing one of the numbers with another random number
and fixed other letters, so S ′a is constructed as follows:

S ′a = {(i ′, r ,m, j) | i ′ ∈ Ea } ∪
{(i, r ,m′, j) |m′ ∈ Ea } ∪
{(i, r ,m, j ′) | j ′ ∈ Ea }.

(3)

Note that we uncover such a metric space where (i) the quads capture a numeric magnitude
concept of similarity by Equation (1), and (ii) this translation that interprets numbers as high-
dimensional vectors encapsulates increase/decrease relationships. The detailed training procedure
for modeling arithmetic numeric representations is described in Algorithm 1. After training and
learning such numeric representations, the corresponding sequence Xa is attached to arithmetic
characteristic Ra . Moreover, we multiply the original value for vectors of each dimension to en-
hance linear correlation as the final representation results.

ACM Transactions on Sensor Networks, Vol. 19, No. 4, Article 94. Publication date: July 2023.



Num2vec 94:9

Direction Characteristic. Different from the arithmetic characteristic, direction depicts the
orientation property of the values rather than the magnitude. Here, Dir-N2v captures the interval
and opposite relationship among numbers to model directional characteristics.

On the one hand, the two relations are involved in reflexive problems due to the particularity
of direction angles. First, interval relationship ri can be regarded as the arithmetic characteristic
with the addition of cycle properties and the subtraction of magnitude attributes. Likewise, we em-
ploy quads to denote the interval relationship while (i, ri ,m, j) is equivalent to (j, ri ,m, i). Again,
angular numbers are constrained by the opposite relationship ro , which refers to the inverse orien-
tation between pairs of directions. Therefore, we employ general triangle inequality to extract this
relationship, whereas the triples are appended symmetry properties (i.e., (h, ro , t ) is equivalent to
(t , ro ,h)). On the other hand, we are supposed to overcome many-to-one/one-to-many problems
in relations because “0” and “360” indicate the same significance.

Therefore, Dir-N2v enables a number to have distributed representations based on their involve-
ment in different relationships. For the purpose of avoiding the proximity of two/three numbers
and ensuring the realization of multi-relation during model training, the angular number i ∈ Ed is
first projected in a relation-specific hyperplanewr , which is denoted as i⊥, and the corresponding
relationship is denoted as rw . So, this projection is defined as

i⊥ = i −w�r iwr .

Moreover, the objective function consists of the following margin-based hinge loss:

Ld =
∑

[η + ΔDq + ΔDt ]+ + γ f . (4)

Here, the first part is similar to Equation (2) but supplements the measurement computing of
triples, of which ΔDq and ΔDt calculate separately the loss about the quads extracting interval
relationship and triples extracting opposite relationship. So, it is measured in two tuples according
to direction relationships (i.e., interval-quad set Si and opposite-triple set So ). Specifically, ΔDt

denotes d(h⊥ + rw , t⊥) − d(h′⊥ + r
w , t ′⊥) where the corresponding incorrect triples (h′, ro , t

′) ∈ S ′o .
S ′o constructs as followed:

S ′o = {(h′, ro , t ) | h′ ∈ Ed }∪
{(h, ro , t

′) | t ′ ∈ Ed },
(5)

where h′⊥, t
′
⊥ are angle entities h′, t ′ projected to the hyperplane. Different from Equation (2), ΔDq

denotes d(i⊥ + rw +m⊥, j⊥) − d(i ′⊥ + r
w +m′⊥, j

′
⊥), where the corresponding incorrect quads are

(i ′, ri ,m
′, j ′) ∈ S ′i . Additionally, the incorrect quads S ′i can be obtained in the same way according

to Equation (2). Again, the second part of Equation (2) is soft constraints for the score function [31].
γ is a hyper-parameter to weigh the importance of this part. As well, f consists of two parts as a
constraint item: one part f1 restricts that all numbers are normalized, and another part f2 ensures
that rw exists on the hyperplane. Specifically, f1 and f2 are designed as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f1 =
∑

x ∈Ed

[‖x ‖22 − 1]+,

f2 =
∑

ri ,ro

[
(w�r r

w )2

‖rw ‖22
− ε

]
+

.

(6)

In both of the preceding cases, the quads and triples play an important role in helping the model
generalize vectors that better represent the realistic direction attributes, as it does in canonical
metric learning scenarios. For instance, the gap between “359◦” and “0◦” is very small, and Dir-N2v
will also put “359◦” close to “0◦”. In contrast, all angular numbers with an opposite relationship
have the largest gap. Other training details are described in Algorithm 2. In addition to employing
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ALGORITHM 2: Dir-N2v

Input:

Numbers and relations sets Ed ⊃ Xd , Ld , training set Si = {si |si = (i, ri ,m, j)}, So =

{so |so = (h, ro , t )}, incorrect set S ′i = {s ′i |s ′i = (i ′, ri ,m
′, j ′)}, S ′o = {s ′o |s ′o = (h′, ro , t

′)}, margin η,
weight γ , representation dimension kd .

Output:

Direction numeric representations on angular number sets Rd .

1: initialize r ,x ← uniform(− 10√
kd

, 10√
kd

), r ← r
‖r ‖ ,

where r ∈ Ld , x ∈ Ed .
2: loop

3: x ← x
‖x ‖ for each x ∈ Ed .

4: Sbatch ← sample a batch from Si , So respectively.
5: Qbatch ← initialize the set of quads and triples.
6: for si , so ∈ Sbatch do

7: s ′i , s
′
r ← sample two corrupted sets respectively.

8: si , s
′
i , so , s

′
o ← update sets by parameter wr w.r.t.

9: i⊥ = i −w�r iwr

10: Qbatch ← Qbatch ∪ {si , s
′
i , so , s

′
o }.

11: end for

12: Rd ← Update representation w.r.t.
Ld =

∑
[η + ΔDq + ΔDt ]+ + γ f

13: end loop

categorical orientations to indicate the surrounding direction [11, 18, 38] (e.g., [E, S, W, N, SE, SW,
NE, NW], representing eight directions of east, south, west, north, southeast, southwest, northeast,
and northwest, respectively), we deal with it similarly applying Dir-N2v. Each orientation value
is regarded as a discrete value, and the interval and opposite relationships are used to constrain it.
Especially, Dir-N2v can also apply to other directional representations by changing the training
entity set and the settings of some parameter variables.

Note that we guarantee that all numbers within the training range serve for pre-training sets.
Therefore, all datasets should belong to training as well as testing, which ensures not only the
accuracy of representation performance but also the correspondence between pre-training output
and downstream input. Two algorithms iterate the training process continuously by minimizing
margin-based ranking loss according to Equations (2) and (4). Certainly, the quality of final pre-
training representations is measured by the downstream prediction performance.

4.1.2 Extract Numeric Knowledge. Modeling arithmetic and direction characteristics is inspired
by knowledge graph embedding [2, 19, 28, 31, 36], where the optimization objective is to learn
multiple relations between pairs of entities. Here, we use the idea of knowledge extraction to
facilitate learning diverse numerical representations in time-series data.

By abstracting and converting the information according to the sequences in given time se-
ries applications, the potentially carried characteristics are captured by the corresponding high-
dimension translation operation. Therefore, it cannot only embody in enriching numeric charac-
teristics but maintain these features in the intermediate high-dimension space.

On the one hand, we exploit Arith-N2v to capture the close association between time series
within a fixed range. For instance, extracting additive relation among “2,” “23,” and “25,” which
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Fig. 5. Extracting addition relation of arithmetic knowledge.

Fig. 6. Extracting opposite relation of direction knowledge.

translates them into high-dimensional vectors and measures the distance between converted
“2+23” and “25” in this relation, as shown in Figure 5. It guarantees that arbitrary two numbers
with one relationship (r+ or r−) are determined, and there is another unique number correspond-
ing to them, which is also in line with the uniqueness of arithmetic operations. Up to this point,
arithmetic knowledge between numbers can be learned and preserved explicitly in downstream
models. On the other hand, we exploit Dir-N2v to capture a directional relationship among an-
gular numbers ranging from 0 to 360. “0◦” and “360◦” denote the same direction, so they should
learn similar representation after inputing the model in order to carry related information and per-
form the corresponding functions. Specifically, the opposite relationship ro takes along symmetry
properties (e.g., “0◦/180◦” is opposite to “180◦/0◦”), as shown in Figure 6. Dir-N2v regards angular
numbers as discrete values for the purpose of breaking invalid arithmetic properties of original
numbers. Additionally, it extracts direction knowledge from high-dimensional translation vectors
Rd , thus preserving for downstream tasks.

4.2 Periodicity Numeric Representations

In the IoT time series forecasting task, some variables can occur periodically (e.g., the weather in
different seasons), but this regular pattern only reflects the rough trend. Other variables possess
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ALGORITHM 3: Perio-N2v
Input:

Training set Xp = {x j }nj=1, sequence length q, representation dimension kp .
Output:

Time representations Rp .

1: initialize parametersW,b ← uniform(− 2√
kp

, 2√
kp

). Periodic activation function T = cos .
2: loop

3: Sbatch ← sample a mini batch from Xp .
4: Tbatch ← initialize the sequence with q time points.

5: for x ∈ Tbatch do

6: Rp = T (Wix + bi ), if 0 ≤ i < kp

7: Input features Tbatch ← Tbatch ∪ Rp

8: end for

9: Rp ← Update representations according to MAE loss.
10: end loop

unstable regularity (e.g., the weekly air quality is periodic in the long term, but there are locally sig-
nificant short-term fluctuations due to rain, holiday, or other reasons). So, the periodicity character-
istic among input variables has difficulty in being learned uniformly. Our strategy to learn periodic-
ity representations requests that we should not depend on timestamp variables, as they only allow
us to learn temporal properties from fixed timesteps. Instead, we design the sliding training win-
dow (sequence lengthω) to include part or all of the time data within a specific time interval. In this
work, we design a targeted algorithm, Perio-N2v, that draws on the ideas of Time2vec [16]. By this
method, we pay attention to the periodic characteristic of numeric sequence in a given window.

Methodologically, we model periodic characteristics through regular patterns of learned offsets
and wavelengths. This completion assigned to extract temporal properties makes that attaching
periodic-numeric representation to time series, which helps learn this periodicity associated with
the downstream forecast. Formally, we add periodic constraints explicitly over a numeric sequence
by the following formula:

Rp[i] = T (Wix + bi ), 0 ≤ i < kp , (7)

where T denotes a periodic function that can be specified as required (e.g., sinusoidal function).
Additionally, kp is the transformed representation dimension. Specifically, for 0 ≤ i < kp , Wi

and bi are the frequency and the phase shift of the periodic function. For instance, the period of
T (Wix+bi ) is π

Wi
—that is, the trends between sequences are consistent approximately at timestep

τ and τ + π
Wi

. Here, we append a relative order index according to sequence window ω so as to

prevent the position from being misaligned. So, Rp[i] is the ith element of periodic representation.
Again, due to the existence of window ω, we can extract local temporal properties. Other training
details are described in Algorithm 3. Through it, we add explicit transition vectors that extract
periodicity characteristic with learnable frequency and phase shifts of a periodic function, which
reflects the changing trends over time.

4.3 Multi-Numeric Representation Fusion

In this section, we describe original data and multi-numeric representations feature fusion design.
For multi-numeric representation fusion, we need to consider the importance of three represen-
tations on the forecast results. Take forecasting the temperature of the next day based on the
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weather conditions of the previous week as an example. Obviously, if the difference in historical
temperature fluctuates greatly, the constraints of arithmetic characteristic will make a greater sig-
nificance on prediction. Again, it is well known that the formation of wind direction depends on
the temperature difference between the wind source and this locality, which can be reflected in the
weight of direction characteristics. Additionally, week-periodic and day-periodic properties are ex-
tremely crucial since sequences exhibit strong periodicity characteristics. Consequently, we realize
that the influence degrees of different representations for downstream forecast targets are differ-
ent when fusing the preceding three representations. So, we exploit the weighted sum method to
merge the multi-numeric representation for the purpose of obtaining the final inputs with explicit
characteristics:

R =Wa � Ra +Wd � Rd +Wp � Rp ,

X = [X; R],
(8)

where � is the Hadamard product.Wa ,Wd , andWp are learned weight parameters, reflecting the
influence degree of three numeric representations respectively on the forecasting target. Addition-
ally, we concatenate original time series X with multi-numeric representations R to get the final
inputs for the predictor.

5 EXPERIMENTS

5.1 Dataset Descriptions

This work conducts experiments with air quality and weather data to illustrate the feasibility and
effectiveness of subjoining our pre-training numeric representation Num2vec. We selected four
representative public world datasets, all of which are widely used in research works. The first is
KDDCUP-B. This dataset comes from KDD CUP 2018,1 ranging from January 31, 2017 to January
30, 2018 (365 days) in Beijing, China. Each record contains six air quality observations (i.e., PM2.5,
PM10, NO2, SO2, O3, and CO) and five meteorological observations (i.e., temperature, pressure,
humidity, wind speed, and wind direction). The second is KDDCUP-L. This dataset is also from
KDD CUP 2018, ranging from January 1, 2017 to December 31, 2017 (365 days) in London, England.
Each record contains three quality observations (i.e., PM2.5, PM10, and NO2) and five meteorolog-
ical observations that are same as the KDDCUP-B dataset. The third is BJMEMC. This dataset is
crawled from the Beijing Environmental Quality Monitoring Center2 and the National Climatic
Data Center (NCDC),3 ranging from January 1, 2020 to December 31, 2020 (365 days) in Beijing,
China. Compared with the KDDCUP-B dataset, it only lacks two meteorological observations (i.e.,
pressure and humidity). The fourth is ETT.4 This dataset is from the work of Zhou et al. [41], col-
lected over 2 years (July 1, 2016 to June 26, 2018) with data from two separated counties in China.
Each record contains seven electricity observations (i.e., HUFL (High Useful Load), HULL (High
Useless Load), MUFL (Middle Useful Load), MULL (Middle Useless Load), LUFL (Low Useful Load),
LULL (Low Useless Load ), and OT (Oil Temperature)).

For the first three datasets, we choose PM2.5 as the target value, and for the ETT dataset, we
choose OT as the target value. Note that all observations in the four datasets were recorded with
equal hourly intervals. Additionally, we divide the training set and test set by 8:2.

1https://www.biendata.xyz/competition/kdd_2018/data/.
2http://www.bjmemc.com.cn/.
3https://www.ncdc.noaa.gov/.
4https://github.com/zhouhaoyi/ETDataset.
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5.2 Experiments Details

5.2.1 Baselines. The numeric representations of Num2vec we presented are universally dedi-
cated to improving the prediction results of multiple models. Next, we compare its performance
based on the following four baseline models:

• LSTM is a type of recurrent neural network capable of learning order dependence in long
sequence prediction problems [15].
• GRU is like LSTM with a forget gate, which also solves the problem of gradient disappearance

and gradient explosion in long sequence training [5].
• LSTnet is a deep learning framework that utilizes both the convolutional layer to discover

the local dependency patterns and the recurrent layer to capture complex long-term depen-
dencies [17].
• TPA-LSTM is an attention model for multivariate time series forecasting, which can learn

inter-dependencies among multiple variables [26].
• Informer is an efficient transformer-based model for long sequence time series forecasting,

which achieves O (LloдL) in time complexity and memory usage [41].

To verify the effectiveness of our Num2vec, we conducted experiments on five predictive mod-
els by plugging in our pre-trained Num2Vec, respectively, named N2v-∼ for short, whose “∼” is
replaced with the five methods’ names. Among them, we take the arithmetic, direction, and peri-
odicity representations obtained from Section 4 as pre-training feature values to the input layer.
As a result, it assists the original data for training better by adding prior knowledge of the logic
characteristic.

5.2.2 Evaluation Metrics. We use RMSE (root mean squared error), MAE (mean absolute error),
and MAPE (mean absolute percent error), which are three widely used metrics to compare differ-
ent experiments’ results. Furthermore, we introduce an additional error metric, PCV (percentage
change in variance) [27], which is conducive to measuring the consistency of methods by calculat-
ing the difference between the variance in the actual data and the predicted data. As we all know,
the lower these four metrics are, the better the prediction ability of this model is, and the better it
can demonstrate the superiority of subjoining our pre-training numeric representations. We per-
form significant tests using the t-test and F-test. Differences are considered statistically significant
when the p-value is lower than 0.05.

5.2.3 Parameter Settings. To make fair comparisons, the optimizer is determined from 0.1 to
0.00001, and we use a cosine annealing strategy to avoid getting stuck in local optima. The hidden
size of models is tuned in the range of [32, 64, 128, 256, 512]. Here, we conduct fivefold cross
validation on the training set to tune the best hyper-parameters of each baseline. Additionally,
we use Microsoft NNI5 to perform optimization of hyper-parameters of all methods. As well, we
first initialize the weights using Kaiming initialization and Xavier initialization for all the Conv
and FC layers of models. For RNN layers, we use the orthogonal initialization to prevent gradient
explosion.

Especially, for our Arith-N2v, the hidden size of the model is fixed to 128, trained by the Adam
optimizer with a learning rate of lr = 0.01. The arithmetic numeric representation is mapped to
high-dimensional vectors of 128 dimensions. For our Dir-N2v, the hidden size of the model is fixed
to 128, trained by the Adam optimizer with a learning rate of lr = 0.005. The direction-numeric
representation is mapped to vectors of 16 dimensions. For our Perio-N2v, the hidden size of the
model is fixed to 128. The periodic function is set to cos , and the numeric representation is mapped

5https://github.com/Microsoft/nni.
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Table 1. Number Representation Evaluation Results on Four Datasets

Dataset Metric
LSTM GRU LSTnet TPA-LSTM Informer

∼ N2v-∼ ∼ N2v-∼ ∼ N2v-∼ ∼ N2v-∼ ∼ N2v-∼

K
D

D
C

U
P

-B RMSE 11.28 11.02 11.34 11.07 11.14 10.97 11.09 10.99 11.08 10.95

MAE 6.31 6.31 6.47 6.29 6.39 6.09 6.26 6.07 6.24 6.20

MAPE 30.89 30.89 30.95 30.45 32.12 28.32 31.46 29.45 30.34 28.62

PCV 4.61 4.15 4.61 2.98 2.98 2.25 5.41 5.40 5.64 5.36

K
D

D
C

U
P

-L RMSE 3.34 3.29 3.40 3.31 3.33 3.27 3.32 3.23 3.30 3.24

MAE 2.30 2.25 2.34 2.18 2.31 2.21 2.32 2.10 2.24 2.19

MAPE 3.30 3.12 3.39 2.82 3.22 3.00 3.65 2.85 2.15 2.12

PCV 9.54 8.61 10.29 8.65 7.60 6.89 6.90 5.55 4.17 3.59

B
JM

E
M

C RMSE 7.79 7.66 7.82 7.69 7.75 7.64 7.77 7.66 7.72 7.61

MAE 4.67 4.68 4.72 4.48 4.68 4.51 4.58 4.55 4.46 4.41

MAPE 24.59 23.25 25.09 23.16 26.24 22.16 25.78 23.72 23.82 22.90

PCV 4.87 4.73 6.48 4.60 2.87 2.19 5.95 5.35 6.08 4.79

E
T

T

RMSE 0.641 0.628 0.651 0.636 0.636 0.629 0.634 0.625 0.625 0.618

MAE 0.431 0.422 0.441 0.433 0.421 0.414 0.415 0.411 0.413 0.411

MAPE 2.340 2.302 2.267 2.258 2.305 2.289 2.276 2.247 2.192 2.178

PCV 0.106 0.102 1.573 1.207 0.123 0.108 0.114 0.104 0.102 0.101

Models with Num2vec are denoted as N2v-∼, and the tilde omits the models’ name. The best results are in bold.

to vectors of 128 dimensions. To consider the randomness of our experiment, we dynamically fine-
tune these numeric representations by setting bias before integrating into the downstream task.
For forecast models, we set the batch size to 128. Each original numerical data is normalized by
the Z-score. We split the time series based on the sliding window approach, and make a simple
single-step prediction according to the previous 48 hours (window size) of records. We implement
Nume2vec and other baseline models in PyTorch. All methods are conducted on a Linux server
with eight NVIDIA RTX2080ti GPUs.

5.3 Results and Discussion

Table 1 presents the evaluation results between baseline methods and basic models with Num2vec
on four datasets. These results show that models subjoining our pre-training Nuw2vec module con-
sistently outperform these baselines without Num2vec on the four datasets by achieving around 4%
less MAE, 3% less RMSE, and 4% less MAPE, which verifies that modeling intrinsic arithmetic, direc-
tion, and periodicity improves the predictor’s ability to effectively forecast future data. Specifically,
in these basic models, Informer, LSTnet, and TPA-LSTM obtain more accurate forecasting results
compared with the sample LSTM and GRU. But on the contrary, N2v-LSTM and N2v-GRU achieve
better performance improvements compared with the baselines, which reveals that the slightly
simple models (with certain characteristic learning ability but not enough explicitly) themselves
are quite limited in learning numeric characteristics of sequences. Again, we observe that different
datasets have different prediction effects (i.e., ETT> KDDCUP-L > BJMEMC> KDDCUP-B), which
reflects the influence of environment and date on air quality and weather. Furthermore, the PCV
values of N2v-LSTnet and N2v-Informer are closer to zero than other methods, which illustrates
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that these methods are relatively stable. The PCV of the London17 dataset is the farthest from zero,
but other metrics are smaller because of the smoothing of true values and the instability of pre-
dicted values. Nevertheless, KDDCUP-B and KDDCUP-L obtain better improvement results—that
is, an average decrease of 2 percentage points compared with BJMEMC and ETT. This is related
to the influence of natural environmental factors as well as unpredictably abnormal events, which
further indicates the complexity of numerical forecasting.

5.4 Microbenchmarks

In this section, we conduct performance analysis separately on three numeric representations,
which is dedicated to exploring the ability to extract potential arithmetic, direction, and period-
icity characteristics, as well as to help understand the contribution of each part to our Num2vec
methods.

5.4.1 Arithmetic Numeric Representations. To further verify the effectiveness of learning arith-
metic characteristics, we design four variants of the basic method and conduct a controlled study
on the KDDCUP-B dataset. Specifically, we choose LSTM as our basic forecast model and PM2.5

concentration values as our metric numbers. So, the remaining four variants add a corresponding
representation module based on LSTM to extract arithmetic relations. Each configuration of the
models is as follows:

• LSTM: Only the basic forecast model without an arithmetic representations module.
• LR-LSTM: Using a normal linear module instead of a representation module. Intuitively, the

linear operation can extract linear features of arithmetic relations, which projects numbers
to higher-dimensional vectors by multiplication.
• transLSTM: Applying the traditional transE method acting as a representation module,

which translates numbers to high-dimensional vectors to extract arithmetic relations.
• Arith-N2v: Our Num2vec method only contains the arithmetic representation module.
• Arith*-N2v: A method that generates one of the arithmetic representation results theoret-

ically based on the idea of our Arith-N2v, which converts to vectors by mapping metric
numbers to the diagonal line of high-dimensional transition space.

Table 2 summarizes the results of preceding five models. It shows that arithmetic numeric rep-
resentation on sequences is profitable and indispensable. Specifically, LR-LSTM outperforms the
basic LSTM method, which verifies that maintaining linear features of metric numbers into high-
dimensional space can help improve the forecasting accuracy. However, it is defective if applying
this normal linear module to all features, because the numbers do not have the ability to distin-
guish various characteristics. In other words, those numeric series that possess linear features are
considered as a relational constraint of the unified scaled proportion (i.e., 0.1, 0.2, and 1,4). Addi-
tionally, only the linear relationship is not capable of explicitly demonstrating the significance of
the difference between numerical values. Therefore, it is extremely crucial to attach the extraction
of the arithmetic characteristic. For transLSTM, the performance is slightly better than the basic
LSTM model, but there is little difference, so the improvement of representation is not persuasive.
Our Arith-N2v model shows that analogous performance to LN-LSTM, which further proves the
effectiveness of extracting the arithmetic characteristic. The difference is not significant as a result
of only single-scaled data in the existing contents.

However, this method is nowhere near achieving the theoretically optimal result due to the
deviation loss of training.

Our Arith*-N2v model generates better arithmetic representations in theory according to the
idea of Arith-N2v. The results achieved a significant improvement among the control models. This
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Table 2. Performance Comparison

on Arithmetic Representation

Metric RMSE MAE

Arith*-N2v 11.701 6.370

Arith-N2v 11.772 6.431
transLSTM 11.827 6.458
LR-LSTM 11.783 6.453
LSTM 11.881 6.502

Fig. 7. Control study of arithmetic representation on the KDDCUP-B dataset.

proves that arithmetic numeric representation can adapt to the model better than the ordinary lin-
ear module and enhance forecast performance. Moreover, first, Figure 7(a) shows the correlation
between ground truth and the predicted result on the preceding methods. The basic LSTM model
presents the lowest prediction accuracy, and our Arith*-N2v model shows the highest prediction
accuracy. This result further proves that it is essential to arithmetic constraints, and our represen-
tation can better maintain arithmetic dependencies between metric numbers in high-dimensional
space. Second, Figure 7(b) shows the convergence speed of models during training. Obviously,
compared with the basic LSTM method, our arithmetic representation has the benefit of reducing
the training epochs of models and accelerating model convergence.

5.4.2 Direction Numeric Representations. Next, we analyze and compare our Dir-N2v with sev-
eral traditional methods based on the KDDCUP-L dataset, so as to verify the availability of ex-
tracting the directional characteristic. We choose GRU as our basic forecast model, wind direction
values as our angle numbers, and PM2.5 concentration as our prediction object. The remaining
three variants add a directional representation module based on GRU. Each configuration of mod-
els is as follows:

• GRU : Only the basic forecast model without a directional representations module.
• Emd-GRU : Adding a generic embedding layer to embed angle numbers into a low-

dimensional space of two dimensions.
• Polar-GRU : Adding a directional feature processing module to map the angular numbers

into the two-dimensional representation of polar coordinates.
• Perio-N2v: Our Num2vec method only contains directional numeric representation module.
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Table 3. Performance Comparison on

Direction Representation

Metric RMSE MAE

Dir-N2v 7.830 4.626

Polar-GRU 7.901 4.746
Emd-GRU 7.913 4.710
GRU 7.898 4.671

Table 4. Performance Comparison

on Periodicity Representation

Metric MAE RMSE

Prio-N2v 11.027 6.274

Prio*-N2v 11.123 6.297
GRU 11.220 6.433

Table 3 summarizes the results of MAE and RMSE among the preceding methods. It can be
observed that the performance of GRU is not much different from Polar-GRU and Embed-GRU.
We can investigate this from the following aspects. First, Emd-GRU calculates the weight matrix
to reduce dimensionality for 361 sparse angles, which treats them as discrete values simply but
lacks the relevant constraints of a directional relationship. Again, although Polar-GRU converts
into directional representation through the sine-cosine function, it is easily destroyed in high-
dimensional space. Our Perio-N2v achieves better prediction results with about a percentage point
increase, which proves the effectiveness of extracting dithe rection characteristic. Our method
helps downstream forecast models learn the high-dimensional representation of the direction by
Dir-N2v, which is conducive to being distinguished from numbers with other relationships, such
as arithmetic. In view of this, each angle value is regarded as a discrete value, and the interval and
opposite relationships are used to constrain it, thus improving prediction performance from the
perspective of modeling direction representations.

5.4.3 Periodicity Numeric Representations. Here, we analyze the role of periodic representation
and explore whether part of the time variables or the whole variables can help yield better perfor-
mance. In allusion to all time data on the KDDCUP-B dataset, we expand and analyze this method
configuration based on the following variants:

• GRU : Only the forecast model without the periodic representation module.
• Prio-N2v: Our Num2vec method only contains the periodic representation of predicted

values.
• Prio*-N2v: Our Num2vec method only contains periodic representation of all time data.

With the designs mentioned previously, we perform a rigorous performance comparison on
MAE and RMSE and give the results in Table 4. We can find that both Prio-N2v and Prio*-N2v
achieve better results than the basic LSTM model, increasing by 2 percentage points and 1 percent-
age point, respectively, which also shows the availability of our periodic representation method.
Moreover, Prio*-N2v only constrains that the periodic properties of predicted value is superior to
Prio*-N2v. This shows a key insight—that is, despite Prio*-N2v capturing all time series time rep-
resentation, it interferes with the periodic learning of predicting results. In other words, the effect
to extract only the periodic characteristics of the predicted values is more targeted.
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Fig. 8. Performance comparisons between N2v-LSTM and its two control models, LSTM and N2vsubA, over

three datasets.

Fig. 9. Performance comparisons between N2v-LSTnet and its two control models, LSTnet and N2vsubD,

over three datasets.

5.5 Ablation Study

In this section, we conduct experiments to analyze variants of Num2Vec via an ablation study.

5.5.1 Analysis on the Arith-N2v Module. Recall that Num2Vec utilizes an Arith-N2v module
to capture the arithmetic characteristic, and in this section we aim to analyze whether such a
design can bring benefits. Here, we directly remove the Arith-N2v module as the final numeric
representations. According to such a design, we denote the new variant as N2vsubA. The results
of Num2vec and N2vsubA on three datasets are shown in Figure 8.

Specifically, we can see that N2v-LSTM performs obviously better than N2vsubA with an im-
provement of about 2 percentage points in RMSE. This reveals that explicitly capturing the arith-
metic characteristic indeed has a noticeable effect. Owing to arithmetic representations, the base
model can directly learn this characteristic for better performance.

5.5.2 Analysis on the Dir-N2v Module. In Num2Vec, the Dir-N2v module helps models obtain
better numerical direction recognition. To verify the effectiveness of Dir-N2v, we also make some
degradation of Num2vec. Specifically, we choose LSTnet for verification, and we denote the new
variant as N2vsubD for LSTnet without using the Dir-N2v module. Figure 9 shows the performance
comparisons of LSTnet, N2v-LSTnet, and N2vsubD on three datasets.

We can see that compared with LSTnet, N2vsubD and N2v-LSTnet achieve higher perfor-
mance. It is easy to understand that a lack of dominant direction characteristic extraction is dif-
ficult to learn the exact features due to the random embedding space. Compared with N2vsubD,
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Fig. 10. Performance comparisons between N2v-GRU and its two control models, GRU and N2vsubP, over

three datasets.

N2v-LSTnet performs better with about 1 percentage point improvement in RMSE. This demon-
strates the correctness and necessity of using direction numeric representations in Num2Vec,
which helps the downstream task capture an explicit directional relationship.

5.5.3 Analysis on the Perio-N2v Module. Recall that we use Perio-N2v to facilitate the model
learning periodicity representations. To validate effectiveness of our proposed Perio-N2v, we de-
sign N2vsubP, a variant of Num2Vec that eliminates the Perio-N2v module. We choose GRU as our
base model for validation.

Results are shown in Figure 10, in which it can be seen that models with periodicity character-
istic extraction all contribute to improvement in three datasets. Compared to N2vsubP, N2v-GRU
achieves better performance with about 2% improvement in RMSE, indicating that our Num2Vec
is influenced by the temporal characteristic extraction module and thus learning periodicity rep-
resentations could better support prediction of the downstream model.

5.6 Analysis on the Hyper-Parameters

5.6.1 Analysis on the Representation Dimension. In this article, we use three numeric repre-
sentations to facilitate the modeling learning for downstream models. Different values of k , the
dimension of numeric representation in Num2Vec, has different effects on prediction performance.
Here, we test different values of three representation dimensions ka ,kd ,kp in {8, 16, 32, 64, 128,
256} to search for the best prediction accuracy. We use LSTM and LSTnet as our base model, and
the results on the KDDCUP-B dataset are shown in Figure 11.

As can be seen, three numeric representations significantly improve prediction accuracy, re-
spectively. The best representation dimensions of three modules are different, which reflects the
structural differences in high-dimensional representations of individual characteristics. Specially,
we mark the best performance with a rectangle. Based on these mark results, we set three repre-
sentation dimensions ka = 128,kd = 16,kp = 128 in our model, respectively.

5.6.2 Analysis on the Window Size. Last, we study the impact of different window sizesω in the
range of 12 to 72 when all other hyper-parameters remain the same. Here, we examine different
choices of ω on the KDDCUP-B dataset, and analyze their impacts to the prediction performance.
The results on four base models are shown in Figure 12.

As we can see, when ω is set too large or too small, the overall performance decreases. The
reason is that a larger window size exacerbates the difficulty of model convergence and a smaller
window size lacks structural information. Moreover, all models with our Num2Vec achieve opti-
mal performance with different window sizes. We believe that since learning potential numeric
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Fig. 11. The impact of the representation dimension in terms of RMSE on the KDDCUP-B dataset. The

dimensionality is increased from 8 to 256. The rectangle indicates the best performance in each experiment.

Fig. 12. The impact of the window size in terms of RMSE on the KDDCUP-B dataset. The window size is

increased from 12 to 72.

representation helps extend potential characteristics to models’ parameter space, it preserves the
essential knowledge of the numeric sequences in high-dimensional transition vectors, thus achiev-
ing better prediction performance. Based on the results, we set a window size of ω = 48 in our
experiments.

6 CONCLUSION

In this article, we presented Num2vec, a pre-training numeric representation learning method
to extract potential logic characteristics (i.e., arithmetic, direction, and periodicity). It attaches
multi-numeric characteristics to sequences based on realistic constraints and converts them to
high-dimensional transition vectors separately. This solves the problem that numerical character-
istics and potential relationships are difficult to distinguish and maintain because of their slightly
external difference and united high-dimensional transformation. Extensive experimental results
on four real-world datasets demonstrated that the model appended to our method achieves better
performance.
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